
Technical Document 

Niagara Analytics Guide 

This PDF is generated from docs.niagara-community.com on: June 18, 2025



Legal Notice 

Tridium, Incorporated 

3951 Western Parkway, Suite 350 

Richmond, Virginia 23233 

U.S.A. 

Confidentiality 

The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation 
(Tridium). Such information and the software described herein, is furnished under a license agreement and may 
be used only in accordance with that agreement. 

The information contained in this document is provided solely for use by Tridium employees, licensees, and 
system owners; and, except as permitted under the below copyright notice, is not to be released to, or 
reproduced for, anyone else. 

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for 
damages of any kind, including without limitation consequential damages, arising from the application of the 
information contained herein. Information and specifications published here are current as of the date of this 
publication and are subject to change without notice. The latest product specifications can be found by 
contacting our corporate headquarters, Richmond, Virginia. 

Trademark notice 

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-
Conditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL 
Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of Oracle 
and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON, LonMark, 
LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara Framework, 
and Sedona Framework are registered trademarks, and Workbench are trademarks of Tridium Inc. All other 
product names and services mentioned in this publication that are known to be trademarks, registered 
trademarks, or service marks are the property of their respective owners. 

Copyright and patent notice 

This document may be copied by parties who are authorized to distribute Tridium products in connection with 
distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise, in 
whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or 
machine-readable form without prior written consent from Tridium, Inc. 

Copyright © 2025 Tridium, Inc. All rights reserved. 

The product(s) described herein may be covered by one or more U.S. or foreign patents of Tridium. 

For an important patent notice, please visit: http://www.honpat.com. 

Legal Notice

2

http://www.honpat.com/


About this guide 

This guide contains important information about how to install and configure the Niagara Analytics Framework 
running on a Supervisor or remote host station. 

Audience 

The information in this guide is for Systems Integrators and Facility Managers who are responsible for configuring 
the tools used to manage complex building systems. 

Document Content 

This guide provides procedures for configuring each aspect of the Niagara Analytics Framework, and concludes 
with a troubleshooting chapter for resolving common problems and answering questions. An index is provided 
to help you find the specific information you are looking for. 

Product Documentation 

This document is part of the Niagara technical documentation library. Released versions of Niagara software 
include a complete collection of technical information that is provided in both online help and PDF formats. 

• Document change log 
This topic provides a brief listing of changes made to the document. 

• Related documentation 
Several documents provide additional information about the Niagara Analytics Framework. 

Document change log 

This topic provides a brief listing of changes made to the document. 

May 30, 2023 

Added practical examples. 

Corrected errors throughout. 

Clarified and rewrote explanations that may have caused confusion. For example, expanded what a data 
definition is how to use one. 

Reworked procedures and updated screen captures. 

November 3, 2022 

Reorganized several chapters, including disbursing the Examples chapter topics near related information. 

Added many concept topics with examples for blocks. 

October 19, 2022 

Added to “Features” topic in How the framework works. 

Changed the title of chapter 2 to Getting Started. 

Legal Notice

3



Emphasized tagging data in “Configuration overview” (Getting Started). 

Added the Examples chapter. 

Added tagging information to “Tags, hierarchies and relationships” in the chapter of the same name. 

Added new topics, “Tags: direct and implied,” “Applying a direct tag” and “Setting up implied tag rules” to the 
Tags, hierarchies and relationships chapter. 

Significantly rewrote “Acquiring tags from remote stations” in the Tags, hierarchies and relationships chapter. 

Added information to “Missing data configuration” in the Missing data management chapter. 

Added “Creating a missing data strategy for a data set” to the Missing data management chapter. 

In addition, updated screen captures and edited text. 

October 23, 2020 

• Added topic regarding Privileged Action Exception error 
• Corrected information in Prerequisites topic about editing nre.properties file for increasing station 

memory. 

March 10, 2020 

Added best practice to refresh the UX chart when loading the report seems sluggish. 

June 14, 2019 

• Added Raw Data Filter topics to the Outlier handling chapter. 

April 30, 2019 

• Added the Outlier handling chapter. 

• Added new scenario in Troubleshooting chapter. 

September 5, 2018 

Initial 2.1 release. 

Parent topic: About this guide 

Related documentation 

Several documents provide additional information about the Niagara Analytics Framework. 

• Niagara Analytics Reference documents each component and view. 

• Niagara Analytics Framework Web API Guide 

documents the code you can use to extend this product. 

• Niagara Hierarchies Guide provides information about setting up logical hierarchies. 

Legal Notice

4



• Niagara Tagging Guide provides information about adding metadata to objects. 

• Niagara Relations Guide explains how to configure relationships in a hierarchy. 

• Niagara Graphics Guide provides general information about how to create Px graphics. 

Parent topic: About this guide 

Legal Notice

5



Getting started 

The Analytics framework processes data in the local station: JACE, Edge device or Supervisor station. It does not 
support using virtual Ords to resolve data in remote stations. 

To get started, you need a station with a tag dictionary that defines tags, tag groups and relations) and a 
hierarchical tree structure for devices and points. 

Applying dictionary tags to the components in the station’s hierarchy creates a data model. 

Applying tags and configuring properties answer the significant questions: what? where? how far back? and 
which? 

• What? The Property Sheet for the lowest child node in the tree structure sets up the request (query) by 
defining input sources and output values. An input source may be a history or the value generated by a 
real-time driver point in a local or remote station. 

• Where? A unique Data Definition component associated with each point may define, among other 
things, which History file or real-time value (identified by a Value Ord) to use. If multiple values are 
involved, the Px properties identify which node to search for multiple instances of a given data source. 

• How far back? The Time Range property defines how far back in time to go when collecting data. 
Properties define how to represent output (the roll up of history using an interval or the aggregation of 
multiple current and historical values), and how to calculate values (sum, average, etc.) 

• Which? Tags filter and define the source data to include in output values and charts. Formulas, 
diagnostics and Px widgets can use tags. 

Once all properties and nodes are configured, request results are available as needed in Px views and through 
the use of Niagara Analytics Explorer. 

Hierarchical data model tree structure 

Parent and child nodes arranged in a hierarchical tree comprise the primary organizational unit of the data 
model. Nodes can contain other nodes. They may represent geographical locations, groups of buildings, 
individual buildings, types of systems, types of tenants, devices, and so forth. Generally, they represent tangible 
things in the data model. 

Proxy nodes in a Supervisor station imitate nodes in a remote station. Their input values mirror the input device 
values contained in the remote station. 

Note: You do not have to completely rebuild your Drivers folder. You can start working with a few nodes and 
build your data model with formulas and diagnostics a little at a time. 

You assign tags to nodes. Tags identify types of nodes. For example, your application may include many 
buildings, each with a unique name. When you tag each structure with the “building” tag, formulas or 
diagnostics can easily find all of them. 

• Configuration overview 
Configuring the a data model for the first time should begin with a planning phase in which you decide 
on the information to analyze. 

• Prerequisites 
To use Niagara Analytics Framework, several conditions must be met. 

• Setting up a station 

Legal Notice

6



To set up the framework in a station, you drag the AnalyticService from the analytics palette to the 
Services folder in the Nav tree. 

• Installing on a remote host 
This is the preferred installation method for installing the framework on a remote host. 

• About licensing 
For a point to be used by the Niagara Analytics Framework, it must be tagged with the a:a (analytics) 
tag. The system automatically compares the total number of points thus tagged with the allowed points 
on your license. 

• Setting up user authentication 
Access to a station database requires user authentication, which is managed by the station’s 
AuthenticationService. As with physical access, programmatic access requires authentication using the 
HTTPBasicScheme (HTTP Basic Authentication Scheme). Consider using a separate user for each type of 
access (physical access, programmatic access, etc.). This practice provides additional security as each 
user requires only the minimum number of access rights necessary to accomplish a specific task. Using 
roles and tagged categories allows for highly-configurable permissions for accessing various station 
components. 

• Features 
The heart of the framework is an advanced high-performance calculation engine. With this engine, real-
time data can be combined with historical data using a set of wire and property sheets. This visual 
programming interface defines algorithms (formulas) that analyze the real-time and trend data 
collected from components, devices, and points. The output from this analysis can be visualized in 
charts and used as input to standard Niagara logic. 

• How Analytics works 
The structure of Niagara 4 makes it possible for the framework to render charts, generate alerts and 
automate device management with minimal configuration effort. 

• The framework in the Nav tree 
To begin your understanding of how the framework data model works symbiotically with Niagara, this 
topic points out where in a typical Nav tree framework configuration appears. These are the areas you 
use most frequently as you set up the framework. 

• Analytics library 
The analytics-lib palette provides the pre-defined algorithms for a variety of common calculations. You 
can modify them or use them as examples when creating your own algorithms. To use an algorithms 
drag it to a Wire Sheet and supply at least a data source. The Algorithm Library chapter of the Niagara 
Analytics Reference documents these pre-defined formulas. 

Configuration overview 

Configuring the a data model for the first time should begin with a planning phase in which you decide on the 
information to analyze. 

The Niagara Framework® maintains a hierarchy of components, devices, and points that reflect the physical 
network to which each object belongs. While information from each device and point is useful for tracking real-
time values and raising alarms, Niagara 4 provides separate hierarchies, tags and relations with which to set up 
more meaningful relationships that may have nothing to do with the physical arrangement of devices on a 
network. The Niagara Analytics Framework (referred to as the framework in this documentation) builds on these 
standard Niagara 4 features to collect and analyze real-time and historical data in a variety of ways. 

For example, your campus may include many buildings. Each building has its own AHU unit for which the data 
model monitors the values generated by three points: Cool Setpoint, Heat Setpoint and Supply Temp. 

The following list summarizes the tasks involved in configuring the data model in this environment: 

• If you are using a Supervisor computer, you need to add the framework components to the station. A 
Supervisor computer provides the necessary resources to process large quantities of data. 

• You add the a tag to each device point that will be part of the data model. 

Tagging data is the key to setting up the model. The easiest way to tag data is by using a tag dictionary 

Legal Notice

7



with a tagging rule. 

• Each tag may be accompanied by a data definition, which identifies the type of data (cooling capacity, 
temperature, voltage, etc.) the tag represents. You can view the associated data definitions at 
AnalyticService > Definitions. 

• After tagging each point, you mayset up an optional hierarchy by geographical location or, perhaps, by 
the person responsible for maintaining the AHU unit(s). 

• Next, you use a pre-defined algorithm (formula) or create your own algorithm to perform calculations. 
These calculations define how to combine historical trend data, and maximum and minimum 
acceptable values. 

• Each algorithm includes a Data Source Block. The Data property for this component contains the same 
tag as that used to tag the device points. 

Data collection happens by virtue of the assigned tags and hierarchy without requiring complicated 
programming. 

• To visualize the collected data, you bind an algorithm to a Px or Web chart that can take the form of a 
dashboard or report. To run an algorithm you open the chart that references the algorithm or set up a 
poller to run the algorithm at regular intervals. 

• Alerts use algorithms that yield a binary result (true or false). A true result can generate an alarm, 
which appears on the standard alarm console. 

• A control point with an Analytic Proxy Extension stores the result of processing an algorithm and can 
serve as an input to standard components for the purpose of controlling device performance based on 
logic. 

Note: You can start by working with a few tags, hierarchies, and algorithms, learning how to visualize and 
manage the results a little at a time. 

Parent topic: Getting started 

Prerequisites 

To use Niagara Analytics Framework, several conditions must be met. 

Niagara certification 

As the systems integrator or data model designer, you have completed Niagara certification training and are 
familiar with the Workbench interface. 

Supported hosts 

Niagara Analytics Framework runs on a Niagara 4 Supervisor, JACE-8000 orNiagara Edge 10 host. 

Memory requirement 

The number of points, algorithms and history records a host (PC or remote host) can process is limited by 
available memory. Compared to running in a JACE or Edge device, more memory resources are available when 
running a Supervisor station on a PC. 

A lack of adequate memory (heap memory) to run the framework can cause a Supervisor station to fail. The 

Legal Notice

8



amount of available heap memory on a PC is determined by the Xmx property as configured in the 
nre.properties (Niagara Runtime Environment) file. This text file is located in the etc folder under the daemon 
user home directory. Your PC must have enough physical memory resources to accommodate any change you 
make to the Xmx property. 

Note: You can choose the daemon user home location during Workbench installation. Assuming you install on a 
“C” drive, the default location is C:\ProgramData\Niagara4.x\<brandname>. See the Selecting the Daemon User 
Home location topic for related information about daemon user home. 

License requirement and limitations 

Niagara Analytics Framework must be licensed for your host (Supervisor PC, JACE or Edge device). You add the 
feature to an engineering license using the standard Niagara licensing model. 

The license limits the number of points the framework can use. An a:a tag on a point marks it as being used by 
the framework. The AutoTagAnalyticPoint property on the AnalyticService controls the automatic tagging of 
points used by the framework. When this property is set to true, the framework applies the a:a tag to any point 
referenced by an analytic request. 

Modules required 

These modules run under all framework versions. 

• analytics-lib-ux.jar 

• analytics-rt.jar is required by both stations and engineering platforms running tools (Workbench) 

• analytics-ux.jar 

• analytics-wb.jar is the user interface. This module is required to run the engineering tool (Workbench). 

Core software and modules required 

The framework requires the latest version of Niagara. The specific modules the framework requires include: 

• alarm.jar 

• baja.jar 

• bajaui.jar 

• bql.jar 

• control.jar 

• driver.jar 

• email.jar 

• file.jar 

• fox.jar 

• gx.jar 

Legal Notice

9



• history.jar 

• niagaraDriver.jar 

• platform.jar 

• schedule.jar 

• wbutil.jar 

• web.jar 

• workbench.jar 

These modules reside in the modules folder. 

Browser requirement 

The framework’s visualization tools include web charts (Ux charts) with scalable, vector graphics. These graphics 
require a browser that supports HTML5. 

Station configuration 

The procedures in this guide assume that you have configured the network with at least one remote host and 
station whose device drivers and points have been set up and configured for your application. It also assumes 
that all proxy points have been discovered and configured in any remote host station, and in your Supervisor 
station. 

Parent topic: Getting started 

Setting up a station 

To set up the framework in a station, you drag the AnalyticService from the analytics palette to the Services 
folder in the Nav tree. 

1. Open Workbench and connect to your Supervisor station. 
2. Open the analytics palette. 
3. Drag the AnalyticService component from the palette to the Services folder in the station’s Nav tree. 

When you add the AnalyticService, the framework automatically adds a standard Tag Dictionary named 
analytics to the station's TagDictionaryService component. This dictionary includes a single a:a marker 
tag under its Tag Definitions. 

4. To use algorithms from the analytics-lib palette, open the analytics-lib palette and expand the 
Tag_Dictionary folder. 
Many of the algorithms provided in the analytics-lib palette (Algorithm > English or Algorithm > Metric 
palette sub folders) use tag definitions that are not found in the default Niagara or Haystack tag 
dictionaries. Those additional tags are defined in a tag dictionary named Analytics (subtle difference 
with a capital A). This tag dictionary is in the analytics-lib palette under the TagDictionary sub folder. 

5. Delete the existing analytics tag dictionary from the station’s TagDictionaryService. 
6. Drag (or copy and paste) the Analytics container from the palette to the TagDictionaryService. 
7. As a best practice, save the station (right-click the station in the Nav tree and click Save Station from the 

drop-down menu). 

Parent topic: Getting started 

Legal Notice

10



Installing on a remote host 

This is the preferred installation method for installing the framework on a remote host. 

1. Open Workbench on your Supervisor computer. 
2. Open a platform connection to the remote controller, and connect to the station. 
3. Open the Software Manager view in the remote station and scroll down to the analytics module in the 

list of software installed on the Supervisor computer. 
4. Select analytics and click Install (at the bottom of the view). 

The installation software checks the versions of all other installed modules on the host, displays a list of 
any that are out-of-date (compared to the modules installed locally), and pre-selects an install option. 

5. De-select the install option for any modules other than the framework modules. 

CAUTION: Do not bring any modules other than the framework modules up to date. 

6. To install the module files on the remote host, click Commit. 

The Software Manager may need to automatically stop any running station. It displays a confirmation 
window. 

7. To confirm the station stop, click OK. 
The Software Manager stops the station and continues with the module installation process. When 
finished, the Software Manager displays that module files are Up to Date. 

Parent topic: Getting started 

About licensing 

For a point to be used by the Niagara Analytics Framework, it must be tagged with the a:a (analytics) tag. The 
system automatically compares the total number of points thus tagged with the allowed points on your license. 

Be aware of these licensing-related factors: 

• When set to true, the AutoTagAnalyticPoint property on the AnalyticService causes the framework to 
automatically tag each new point with the a:a tag as required for use with the service. During initial 
station configuration, setting this property to true saves time. However, once the framework is 
configured and running in your Supervisor station, you should set this property to false. 

• If the analytics tag dictionary and a:a tag definition are missing from the TagDictionaryService, the 
AnalyticService tries to add them to the TagDictionaryService. 

• You can use a BQL scaler function in a platform’s Program service to query points with a specific tag 
(such as the a:a tag) and bulk edit them. 

• If you remove the a:a tag from a point, you must refresh cache to decrement the a:a tag counter. To 
refresh cache, right-click the AnalyticService and click Actions > Refresh Cache Full. 

• Configuring the service for licensing 
A Niagara Analytics Framework license is based on the number of points used in algorithms. As you 
identify the points to use in algorithms and alerts, the system automatically tags each point with the 
a:a tag. You can view the number of points configured. An AnalyticService property turns the 
automatic tagging on and off. This procedure explains how to configure this property. 

• Determining the number of points used 
This procedure explains how to determine the number of points used. This number must not exceed 

Legal Notice

11



the number of points allowed by the license. If it does, the framework stops working. 
• Confirming that the AnalyticsService component is licensed 

A component is licensed if its Status property reads {Ok}. 

Parent topic: Getting started 

Configuring the service for licensing 

A Niagara Analytics Framework license is based on the number of points used in algorithms. As you identify the 
points to use in algorithms and alerts, the system automatically tags each point with the a:a tag. You can view 
the number of points configured. An AnalyticService property turns the automatic tagging on and off. This 
procedure explains how to configure this property. 

You are working in Workbench and are connected to a station. 

1. Right-click the AnalyticService and click View > Property Sheet. 
The AnalyticService property sheet opens. 

2. To enable automatic tagging with the a:a tag, set Auto Tag Analytic Point to true and click Save. 
You enable this property before adding algorithms and alerts. Once your framework is configured you 
should disable this feature. 

CAUTION: If you leave this feature enabled, and, at some future time, exceed the number of licensed 
points, the framework will stop working. 

Parent topic: About licensing 

Determining the number of points used 

This procedure explains how to determine the number of points used. This number must not exceed the number 
of points allowed by the license. If it does, the framework stops working. 

You are working in Workbench and are connected to a station. 

1. Right-click the AnalyticService in the Nav tree and click View > Property Sheet. 
The AnalyticService property sheet opens. 

2. Check the Point Count property. 
The system counts each point that has the a:a tag associated with it. The system automatically adds 
this tag as you configure algorithms and alerts. If you change your mind about using a particular point in 
a calculation, you can remove the a:a tag from the point. 

If you remove the a:a tag, you must rebuild memory cache for the deletion to take effect. 

3. To rebuild cache, right-click AnalyticService and click Actions > Rebuild Cache. 
Rebuilding cache re-calculates the Point Count. 

Parent topic: About licensing 

Legal Notice

12



Confirming that the AnalyticsService component is licensed 

A component is licensed if its Status property reads {Ok}. 

You are working in Workbench and are connected to a station. 

1. Right-click the AnalyticService and click either Views > Ax Property Sheet or Views > Property Sheet. 
The property sheet opens. 

2. Confirm that the Status property reads {Ok}. 

You are ready to begin analyzing data and spotting trends. 
Parent topic: About licensing 

Setting up user authentication 

Access to a station database requires user authentication, which is managed by the station’s 
AuthenticationService. As with physical access, programmatic access requires authentication using the 
HTTPBasicScheme (HTTP Basic Authentication Scheme). Consider using a separate user for each type of access 
(physical access, programmatic access, etc.). This practice provides additional security as each user requires only 
the minimum number of access rights necessary to accomplish a specific task. Using roles and tagged categories 
allows for highly-configurable permissions for accessing various station components. 

You have administrative rights. The station is open in Workbench. 

1. Open the baja palette. 

2. Add the HTTPBasicScheme under the Services > Authentication Service > Authentication Schemes 
node in the nav tree. 

3. Create a role to assign to users based on the type of access. 
For example, users who are permitted to create and view web charts may be assigned the “NA_charts” 
role. Permissions for this role might allow a user to read from the database but not invoke actions or 
write records to it. 

Users who are permitted to query the station database with API calls may be assigned a “NA_API” role. 
Permissions for this role might allow a user to read from the database and invoke actions, but not write 
records to it. 

4. Expand Services > UserService in the nav tree and double-click the user name you intend to use to 
access the station database. 
The Edit User window opens. 

Legal Notice

13



5. Select HTTPBasicScheme from the Authentication Scheme Name drop-down list, assign the role you 
created, and click OK. 

Parent topic: Getting started 

Features 

The heart of the framework is an advanced high-performance calculation engine. With this engine, real-time 
data can be combined with historical data using a set of wire and property sheets. This visual programming 
interface defines algorithms (formulas) that analyze the real-time and trend data collected from components, 
devices, and points. The output from this analysis can be visualized in charts and used as input to standard 
Niagara logic. 

When applied to historical and real-time data, framework algorithms (formulas) can help you gain insight to 
better manage your operations. The product includes these features: 

• An open and extensible analytical environment that you can customize to meet your needs 

• Analytic tools that apply to any industry, including manufacturing, as well as building management 

• The ability to set up complex analysis without custom programming 

• Support for third-party API visualization and other complementary applications 

With these tools you can compare monthly and yearly energy expenditures against targets. 

Figure 1. Example of energy analytics 

Legal Notice

14



You can scroll through histories to take a look at statistics. 

Figure 2. Result of triggering the analytic model

In this example, you can compare your energy for the month to your budget and observe the result. This is 
evaluating the data in the station by a given time period, every 15 seconds in this example. 

The framework can: 

• Look for something and let you know it found it. 

• Perform a calculation on a set of inputs to give you the result. 

• Set up a graphic to visualize data for a particular need. 

• Look for faults in systems if you know how a system fails. 

The custom rules you create are very powerful. 

Often people want to compare a series of histories with a baseline. 

Figure 3. Comparison to a baseline 

Legal Notice

15



The gray in the background shows last year’s monthly performance compared to this year’s blue bars. 

Algorithms designed to work with a specific data type, such as electrical consumption (KWH), could easily be 
duplicated and modified to instead work with water consumption (gallons) or gas consumption (ccf). This is 
possible because inputs to algorithms are defined based on tags, such as hs:energy to identify a source of 
electrical consumption instead of being bound to specific control points (end points) in the station. 

Parent topic: Getting started 

How Analytics works 

The structure of Niagara 4 makes it possible for the framework to render charts, generate alerts and automate 
device management with minimal configuration effort. 

At the risk of oversimplifying framework workflow, the following flowchart shows how a request for data initiates 
processing, which results in human-readable analysis and action. 

Figure 1. Flowchart 

In the standard Niagara Framework, device points update on change of value (CoV). By contrast,Niagara 
Analytics Framework points update upon request. An analytic request is inherent in the structure of the data 
model, formulas and Px views. There are two types of requests: 

Legal Notice

16



The framework processes an analytic request when: 

1. A poller triggers an analytic alert 

2. A user opens a Px view, which causes a Px widget (analytic chart, analytic table, bound label with 
analytic binding, or any widget with an analytic binding) to execute 

3. An analytic proxy extension executes. 

4. A user opens a Wire Sheet that contains analytic data. 

5. The framework receives an analytic web API request. 

6. An analytic request may just be for a type of data, such as hs:zoneAirTempSensor and not 
specifically an algorithm like alg:HighTemp. 

7. The request uses tags to pull data from the station database. 

8. In addition to the Property Sheet, the framework uses the familiar Wire Sheet as its canvas on which to 
collect source data. An algorithm then analyzes the data you tagged by executing the blocks on the 
Wire Sheet. 

Alerts, Algorithms, Data Definitions, Analytic Proxy Extensions, Data Source Blocks, and Request 
Overrides use aggregation, rollup, totalize and data filters to configure calculations. 

9. A value request returns a value. A trend request returns a table, which contains one or more records 
including at least a timestamp (BAbsTime) and value (Boolean, Numeric, Enum or String). 

There is no way to directly invoke an action based on the result of an analytic query, but the results of an 
algorithm, resolved through a control point with an analytic proxy extension, could be linked into some custom 
component that might invoke an action. 

Parent topic: Getting started 

The framework in the Nav tree 

To begin your understanding of how the framework data model works symbiotically with Niagara, this topic 
points out where in a typical Nav tree framework configuration appears. These are the areas you use most 
frequently as you set up the framework. 

Drivers container 

Tip: Consider opening each container in a separate tab so you can quickly navigate among them without having 
to scroll the Nav tree. 

Your Drivers folder models your network and devices. This is where all your points reside. When tagging points, 
you can use this space or the Hierarchy space (once you create one or more hierarchies). 

The AnalyticService 

Figure 1. AnalyticService under the Services folder 

Legal Notice

17



You use the AnalyticService in the Services container to configure framework properties. This folder also 
contains four sub-folders for configuring framework features: 

• The Alerts folder contains alerts. These components use algorithms to evaluate conditions and may or 
may not generate an alarm. 

• The Algorithms folder contains the formulas used by alerts, Px Views and Web Charts. 

• The Definitions folder contains data definitions. 

A Data Definition is an optional component the framework uses to configure default properties for a 
specific data item defined in a station. Data Definition components simplify configuration by defining 
defaults that apply across the framework. These default properties may be overridden for a specific 
analytic request in an Alert, Analytic Proxy Ext or Binding. 

An Analytic Data Folder under the AnalyticService groups Data Definition components. The Analytic 
Data Manager serves as the primary view for this folder. 

You may have a data definition for each type of data to be used in formulas and charts. Pre-defined data 
definitions are located in the data model’s Dictionary. You can modify and add to these definitions. 

A formula (algorithm) may serve as a data definition. A graphic widget also provides a data definition 
property. 

• The Pollers folder contains components to manage data sampling frequency. 

HierarchyService 

Figure 2. An example of a HierarchyService 

You use the HierarchyService to define a logical data model that is independent of your drivers-network-device 
model. 

While this service is a feature of Niagara 4, and not specifically a feature of the framework, it is indispensable to 
the framework. The HierarchyService provides the foundation for the alternative, meaningful data model that 
appears in the Hierarchy space. 

Legal Notice

18



Hierarchy folder 

Figure 3. Example of a Hierarchy node 

When you save a hierarchy, the HierarchyService automatically creates a Hierarchy structure at the same level as 
the Config container. You can use this hierarchy space to navigate from point to point. 

The example above defines two hierarchies. The AnalyticDataModel organizes building equipment (AHUs, etc.) 
by geographic location. the AnalyticDashboards hierarchy contains all dashboard representations for the 
geographical locations. 

TagDictionaryService 

Figure 4. An example of a TagDictionaryService 

You use the TagDictionaryService to set up tags. When assigned to individual points within a hierarchy, the 
framework uses tags to identify data source values. 

While the tag dictionary is a feature of Niagara 4, and not specifically a feature of the framework, the Niagara 
Analytics Framework provides one of the most compelling reasons to use tags. This is where you can create your 
own tag dictionary. 

You define inputs (data sources) and outputs by tagging data and configuring properties. Several tag dictionaries 
provide the tags to apply to points including: 

• Haystack tag dictionary 

• Niagara tag dictionary 

You may create your own tags using an Analytics dictionary component under the TagDictionaryService. 

Folder to contain Analytics’ logic 

Figure 5. An example of a logic folder 

Legal Notice

19



At the same level as the Services and Drivers containers, you can create a folder to contain framework-specific 
components, such as Px views, schedules, special points, time triggers and proxy extensions. 

The example screen capture above is from a demonstration station. Your logic folder may be very different. 

Files folder 

Figure 6. Example of chart files in the Files folder 

The Files folder contains framework chart files. 

In the example, two folders separate the UxCharts (Web Charts) from the Px Views. 

Parent topic: Getting started 

Analytics library 

The analytics-lib palette provides the pre-defined algorithms for a variety of common calculations. You can 
modify them or use them as examples when creating your own algorithms. To use an algorithms drag it to a 
Wire Sheet and supply at least a data source. The Algorithm Library chapter of the Niagara Analytics Reference 
documents these pre-defined formulas. 

Figure 1. analytics-lib palette 

Legal Notice

20



The analytics-lib palette consists of three folders: 

• The Algorithm folder contains two sets of pre-defined algorithms: one set that supports English and the 
other that supports Metric units of measure. Each set contains instances of all algorithms including 
those that do not require specific units. 

• The TagDictionary folder contains a tag dictionary named Analytics with pre-configured tag and tag 
group definitions. Those tag and tag group definitions provide algorithms, which you assign to 
applicable points in the station. 

• The Definition folder contains English and Metric configurations. A definition is a set of properties that 
associates specific processing information with each tag, and consequently with each object (point) to 
which the tag is assigned. You can remove, modify, and add new definitions. Often the best course of 
action is to copy an existing definition, rename it with a unique name, then modify it to meet your 
needs. 

Parent topic: Getting started 

Legal Notice

21



Tags, hierarchies and relationships 

A station’s Config > Drivers tree structure organizes a physical group of devices by network protocol, device, and 
point. This structure does not, for example, identify which building, region or tenant a point belongs to. Using 
the powerful hierarchy, tag, and relations features of Niagara 4, the framework can set up data source structures 
for analysis without requiring you to completely configure a separate data model. 

A tag is a piece of information added to objects to make them more accessible and flexible for search and 
analysis. Tags support the use of hierarchies to organize objects in a station. 

A hierarchy is a logical navigation tree for a system. Rather than define each element of an organization in a 
navigation (Nav) file, the HierarchyService defines a navigation tree based on a set of level definition rules. 

A relation connects components to one another for the purpose of building a hierarchy. 

Tags are contained in dictionaries. You can use a standard tag dictionary, such as Haystack, or your own tag 
dictionary. 

Tags, hierarchies and relations are features of Niagara 4. More information about working with them can be 
found in the Niagara Tagging Guide, Niagara Hierarchies Guide and Niagara Relations Guide. 

• Tags: direct and implied 
Tagging identifies, in a consistent way, the data to include in an analytic request. This may be the most 
important set up task and is the last step before running a query. 

• Hierarchy setup 
A hierarchy is a tree of level definitions, which identify the tags and NEQL queries to use when 
searching for data. Hierarchies provide meaningful relationships among data points. The same data 
accessed in different hierarchies can yield different analytical results. 

• Relationships 
The relations feature provides the mechanism for structuring relationships among points in a hierarchy. 

Tags: direct and implied 

Tagging identifies, in a consistent way, the data to include in an analytic request. This may be the most important 
set up task and is the last step before running a query. 

There are two ways to tag points so that the framework can find the data to analyze: 

• with a direct tag 

• with an implied tag 

Setting up points with direct tags can be a very time-consuming process, especially if you have hundreds of 
points to analyze. 

Using implied tags is the best practice. Implied tags rely on rules you set up to assign tags to points. These rules 
depend on your point naming convention. The best way to tag data is with a tag rule. 

Three standard (default) dictionaries are available with the framework. 

• The Niagara dictionary contains commonly-used tags. 

• The Haystack dictionary is an open source dictionary created by Project Haystack to “streamline 
working with data from the Internet of Things.” (project-haystack.org). 

Legal Notice

22



The Niagara Analytics Framework comes with a third pre-configured Analytics Tag Dictionary. 

The framework automatically created an Analytics tag dictionary for you when you added the AnalyticService to 
the station. A pre-configured Analytics dictionary in the analytics-lib palette includes the additional tag and tag 
group definitions used with the provided algorithms. Before you create your own dictionary, view the tags 
provided by these tag dictionaries. They may meet your needs. 

• Creating a tag dictionary 
You would create your own tag dictionary to apply your own unique tags. 

• Applying a direct tag 
Direct tags add metadata to points. 

• Setting up implied tag rules 
To automatically assign tags to points, you set up tag rules in your smart tag dictionary that are based 
on your component naming convention, component type or assigned tags. Building tag rules in the 
Supervisor station assign implied tags to NiagaraNetwork proxy points or other drivers’ control points 
(BACnet, Modbus TCP/IP, OPC, etc.). 

• Tagging proxy points with n:history 
To render data on charts and in tables, each point requires an n:history tag. As newly-discovered 
proxy points coming in from remote stations do not have history extensions with an implied n:history 
tag, use this procedure to automatically add the n:history tag to each newly-discovered point. 

• BACnet Network points with n:history 
If BACnet control points in the station have standard history extensions, they already have the implied 
n:history tag assigned. 

• Associating definitions with tags 
The Definitions container under the AnalyticService contains information types that identify the 
characteristics of the data to be analyzed. A set of pre-defined definitions are in the analytics-lib 
palette. You can create your own definitions. This topic explains how to modify a definition, how to 
copy another, and customize it to create a new definition. This work is done in Workbench running on a 
Supervisor platform. 

• Changing the default behavior of a tag 
Using Data Definition components can simplify setup by configuring the typical properties (aggregation 
function, rollup function, unit and precision facets, missing data strategy and outlier handling) in one 
place, which you then apply as defaults through the application. 

• Tag inheritance and the a:a tag 
The a:a marker tag identifies each point used by the framework. It is an origin entity. Entities that 
declare a tag are an instance of that tag. Think of this entity as having an “is a” relationship with the tag, 
while descendants of this entity have an “in a” relationship. This is a useful concept for algorithms. 

• Removing all a:a tags 
You can use the ProgramService’s Batch Editor to remove the a:a tag from all points used in an alert or 
algorithm. 

Parent topic: Tags, hierarchies and relationships 

Creating a tag dictionary 

You would create your own tag dictionary to apply your own unique tags. 

The station is connected. You are working in Workbench 

1. To confirm the presence of tag dictionaries, double-click the TagDictionaryService in the Nav tree. 
The Tag Dictionary Manager opens. 

Legal Notice

23



2. To create the Analytics tag dictionary in a station, open the analytics-lib palette, expand the 
Tag_Dictionary folder in the palette, and drag (or copy and paste) the Analytics tag dictionary to the 
Config > Services > TagDictionaryService in the Nav tree. 

3. To view the tags contained in any tag dictionary, expand the TagDictionaryService, expand the specific 
tag dictionary name, and expand or double-click the Tag Definitions node. 

4. To view the Property Sheet for an individual tag, double-click the tag in the list. 

Parent topic: Tags: direct and implied 

Applying a direct tag 

Direct tags add metadata to points. 

You are logged in to the station with the points you intend to tag. The tag dictionary(ies) you want to use are 
available. 

1. Locate the point to tag. 
2. Right-click the point and click Edit Tags. 

The Edit Tags window opens. 

You may have several dictionaries open. The Niagara dictionary is open by default. 

3. Use the Tags or Tag Groups trees in the upper pane to locate and select the desired tag or tag group, 
then click the Add Tag button to assign the tag or tag group to the lower pane (direct tags). 
You may directly associate more than one tag with a point. 

4. After adding all relevant tags, click Save. 

Parent topic: Tags: direct and implied 

Legal Notice

24



Setting up implied tag rules 

To automatically assign tags to points, you set up tag rules in your smart tag dictionary that are based on your 
component naming convention, component type or assigned tags. Building tag rules in the Supervisor station 
assign implied tags to NiagaraNetwork proxy points or other drivers’ control points (BACnet, Modbus TCP/IP, 
OPC, etc.). 

You have a component naming convention and have created your own smart tag dictionary under the 
TagDictionaryService. The tagdictionary palette is open. 

Tag rules reside under the TagRules (TagRuleList) component of a smart tag dictionary. The Niagara and Haystack 
dictionaries have pre-defined tag rules, which apply the tags or tag groups defined in the applicable dictionary as 
implied tags to components in the station. These dictionaries are frozen dictionaries. You cannot add to, delete 
from or edit their tag rules. Your goal in this procedure is to create your own rule in your own smart tag 
dictionary. The framework can then assign the tags defined by your rule automatically to the points and other 
components in your station. 

1. Expand your smart tag dictionary node under Services > TagDictionaryService. 
2. Expand the Tag Rules folder in the palette and drag a rule, such as the AndRule from the tagdictionary 

palette to the Tag Rules folder under your smart tag dictionary. 

In the example, the smart tag dictionary is called MyTagDictionary. 

The palette provides several types of rules including: AlwaysRule, AndRule, BooleanFilterRule, etc. This 
procedure demonstrates the AndRule. 

3. To open the rule’s Property Sheet, double-click the rule, expand its Condition node, expand the 
Conditions node in the palette and drag one or more conditions to the and tag rule. 

Legal Notice

25



In the example, RoomTemp is an AndRule, which checks for two things: 

• The point must be a numeric control point (IsType). 

• The name of the point must contain some form of the words “roomtemp” (BooleanFilter). 

The idea here is that the tag rule might be applied to points named RoomTemp, roomtemp, SpaceTemp, 
ZoneTemp, etc. All are different naming derivations for a point that represents a zone air temperature 
sensor reading. 

4. Configure the tag rule conditions. 
n:name like ‘(?i)roomtemp’ is a NEQL predicate, which configures the rule to apply the listed tags 
to any point that contains “roomtemp” in its name. 

The like key word in the NEQL predicate leverages regular expressions (regex) that specify a search 
pattern in text. The ‘(?i)’ syntax performs a case insensitive comparison of the following text. In this 
case, the pattern matches actual names of numeric points in the station, such as RoomTemp, 
roomtemp, ROOMtemp, ROOMTEMP, roomTemp and other capitalization variations in the name. 

5. To populate the Tag List under the tag rule, copy and paste tags from one of the standard tag 
dictionaries, such as the Haystack dictionary or the Tags sub folder from the tagdictionary palette. 

The tags to be assigned are hs:zone, hs:air, hs:temp and hs:sensor. 

Legal Notice

26



6. If you are using a rule in your smart tag dictionary to apply a tag definition or tag group definition from 
another dictionary, expand the Tag Group List and specify the fully-qualified names, such as hs:zone 
or hs:zoneAirTempSensor. 

Without any other action, the framework applies the configured tags and tag group definitions in this 
tag rule as implied tags to any component in the station whose name matches the conditions defined 
by the rule. 

Parent topic: Tags: direct and implied 

Tagging proxy points with n:history 

To render data on charts and in tables, each point requires an n:history tag. As newly-discovered proxy points 
coming in from remote stations do not have history extensions with an implied n:history tag, use this 
procedure to automatically add the n:history tag to each newly-discovered point. 

Points have been discovered. 

1. Right-click the Config > Drivers > NiagaraNetwork node in the Nav tree and click Views > AX Property 
Sheet. 
The NiagaraNetwork AX Property Sheet opens. 

Legal Notice

27



2. Enable Persist Fetched Tags (change its value from false to true). 
3. To finish preparing the points for analysis, right-click again and click Actions > Force Update Niagara 

Proxy Points. 
This adds a direct n:history tag to the network control point with a tag value matching the n:history 
tag of the remote control point. The framework adds the direct n:history tag to the network control 
points where the control points in the remote station have an n:history tag, there is a history import 
descriptor configured to import the applicable remote history to the Supervisor’s history database, and 
the remote history has been successfully archived to the Supervisor's history database. 

Note: It may take a few seconds to add the n:history tag to all newly-discovered points. Be patient 
and wait for the procedure to complete. 

Parent topic: Tags: direct and implied 

BACnet Network points with n:history 

If BACnet control points in the station have standard history extensions, they already have the implied 
n:history tag assigned. 

If a BACnet device supports trend log objects and is collecting trend data in the BACnet device, the station's 
BACnet driver may be configured to import the BACnet trend log objects from the remote BACnet device. This is 
a similar situation to importing histories from remote stations instead of adding a history extension to a network 
control point. 

The BACnet protocol does not support the concept of reading an n:history tag from a remote BACnet device. 
To map from the control point to the imported BACnet trend data—if you are using BACnet history imports—you 
must manually assign n:history tags to the BACnet control points. It may be more efficient to use a program 
object or robot editor to add the n:history tag and dynamically configure the tag value with the history ID of 
the applicable imported BACnet trend. 

Parent topic: Tags: direct and implied 

Associating definitions with tags 

The Definitions container under the AnalyticService contains information types that identify the characteristics 

Legal Notice

28



of the data to be analyzed. A set of pre-defined definitions are in the analytics-lib palette. You can create your 
own definitions. This topic explains how to modify a definition, how to copy another, and customize it to create a 
new definition. This work is done in Workbench running on a Supervisor platform. 

Workbench is connected to the station, the AnalyticService component is in the Config container, and the 
TagDictionaryService includes the Haystack set of tags. 

1. To access the definitions, double-click AnalyticService > Definitions. 
The Analytic Data Manager opens. 

2. Do one of the following: 
• To create a new definition, click New at the bottom of the window. 
• To edit an existing definition, double-click it in the Nav tree or Analytic Data Manager, or 

select it in the manager and click Edit. 
The definition Property Sheet or Edit window opens. 

The example shows definition properties as they appear in the Property Sheet. 

3. Configure the properties as needed. 
The Id property associates the definition with a tag. 

Parent topic: Tags: direct and implied 

Changing the default behavior of a tag 

Using Data Definition components can simplify setup by configuring the typical properties (aggregation function, 
rollup function, unit and precision facets, missing data strategy and outlier handling) in one place, which you 
then apply as defaults through the application. 

1. Expand the Config > Services > AnalyticService container and double-click Definitions. 
The Analytic Data Manager opens. 

2. To create a definition, click New at the bottom of the window or double-click a definition row to edit an 
existing definition. 
The Edit window opens. 

Legal Notice

29



3. Change the properties associated with the tag identified by the Id property. 
You can set facets in the definition. This is important to ensure that all aggregated data use the same 
units and precision. 

As with other such Edit windows, you can change the properties for more than one tag at the same 
time. 

Parent topic: Tags: direct and implied 

Tag inheritance and the a:a tag 

The a:a marker tag identifies each point used by the framework. It is an origin entity. Entities that declare a tag 
are an instance of that tag. Think of this entity as having an “is a” relationship with the tag, while descendants of 
this entity have an “in a” relationship. This is a useful concept for algorithms. 

When you add the a:a tag to a device or point in a Supervisor station, that device or point becomes an ancestor 
to similar points in remote stations. You can use these ancestors to find certain tags, such as 
hs:zoneAirTempSensor and potentially aggregate or access the information from the remote station. 

Hierarchies group tags hierarchically. Any device or point to which you assign a tag as part of a hierarchy can 
serve as an ancestor tag. 

Parent topic: Tags: direct and implied 

Removing all a:a tags 

You can use the ProgramService’s Batch Editor to remove the a:a tag from all points used in an alert or 
algorithm. 

1. Open the ProgramService and click Find Objects. 
The Bql Query Builder opens. 

Legal Notice

30



2. To add a filter, on the Match row click the plus icon ( ) at the right end of the row. 
A new row opens. 

3. Paste this syntax into the first field editor (left most) of the filter: analytics:BqlLib.hasTag('a:a'). 
4. Configure the equality operator (middle field editor) as equals (=) and click OK. 
5. Right-click AnalyticService and click Actions > Rebuild Cache. 

Parent topic: Tags: direct and implied 

Hierarchy setup 

A hierarchy is a tree of level definitions, which identify the tags and NEQL queries to use when searching for 
data. Hierarchies provide meaningful relationships among data points. The same data accessed in different 
hierarchies can yield different analytical results. 

Setting up a hierarchy is documented in the Niagara Hierarchies Guide. 

Parent topic: Tags, hierarchies and relationships 

Relationships 

The relations feature provides the mechanism for structuring relationships among points in a hierarchy. 

A relationship exists between two components. A parent component has one or more child relationships. The 
collection of data flows from one point to another based on the relationship between points. There are two 
types of relations: 

• Direct relations are those that you apply (using relation markers) directly to a point. These relations are 
defined in a tag dictionary. The query configured by a relation definition on a hierarchy causes the 
system to return data. 

• Implied relations are defined by tag rules in a Smart Tag Dictionary and applied automatically by the 
system. The query configured by a relation definition on a hierarchy causes the Smart Tag Dictionary to 
interpret the tag rules against the given point and return a list of implied relations. 

You establish relationships in two places: 

• By placing relations markers on points. These identify parent and child points. 

• By adding relation level definitions to hierarchies set up where the system searches for data beyond the 
individual point. 

Relations themselves may be tagged. The Niagara Relations Guide describes more fully how to set up 
relationships. 

Parent topic: Tags, hierarchies and relationships 

Legal Notice

31



Algorithms, alerts and alarms 

An algorithm performs a calculation on real-time or historical (trend) data to generate a result. The result can 
trigger an alert or an alarm, be displayed on a chart, or can become an input to another calculation. 

A single algorithm can run against data collected from an entire building. For example, assume your building has 
100 air handling units and an algorithm to monitor their performance. When you add 50 more units, and tag 
each unit appropriately, without any additional effort on your part the original algorithm applies to all 150 units. 

Using a poller, an alert runs an algorithm to monitor point performance. Alerts may trigger alarms, which appear 
on the normal alarm console. If the alert that triggered an alarm continues to exist, the alarm persists on the 
alarm console even after it has been acknowledged or force cleared. 

The framework provides two uses for algorithms. You can use them to: 

• Test for an individual condition. The alert running the algorithm can then automatically sound an alarm 
or trigger a remedy. 

• Look back at the history of a point and report any events that meet defined criteria. For example, an 
algorithm can answer the question: Has there been any time in the past when a hot water valve was 
open more than 90% with a room temperature of three degrees below the setpoint for an hour? 
Depending on the amount of data (that is, how far back in the past the stored data exist), you may be 
able to identify a consistent pattern (a trend) that points to a condition requiring attention. 

Note: Although algorithms run on any platform, if you intend to process large volumes of historical 
data, consider running algorithms on a Supervisor platform. 

• DataSourceBlocks and calculations 
The DataSourceBlock is the primary means to supply data to an algorithm. The block supports both 
value and trend requests. Logic blocks, of which there are many, provide the algorithm calculations. 
Each algorithm’s Wire Sheet contains these blocks. 

• Creating an algorithm 
Algorithms are formulas created on a wire sheet that enable calculations, where the framework can 
combine real-time and historical data to produce values and analyze trends (time series). 

• Creating an alert 
An alert has a Data property the same as does an analytic proxy extension and analytic binding, which 
you can technically configure with a tag or tag group; however, the intention of an alert is to configure 
the Data property to reference an algorithm, which has some fault detection logic that returns a 
Boolean value. The Alert's Poller property configures how often the Alert automatically processes the 
configured algorithm. This updates the applicable properties on the Alert component. When the result 
of processing the algorithm returns a true value, an alert condition exists. The Analytic Alert Manager 
view on the Alerts component summarizes the current state of all alerts. The Alert Nodes View on an 
individual alert provides the details for each alert. 

• Viewing an alert in the alarm console 
Alerts can generate alarms, which appear in the alarm console. 

• Real-time request configuration 
The framework provides complex yet flexible methods to configure the application, which may 
sometimes give you seemingly unexpected results It is important to understand the various ways 
properties in an analytic request might be set or overridden. These examples set up a real-time 
aggregation in different ways to demonstrate how the framework evaluates settings. 

• Trend Interval defined in a binding 
Interval is a property used in conjunction with analytic trend requests to specify the time window to 
combine records using the configured Rollup function. The framework handles the Interval property in 
special ways depending on where you configure it. 

• Trend Interval defined in a proxy extension 
The framework handles the Interval property on the AnalyticProxyExt in a special way because, 

Legal Notice

32



ultimately, the extension must resolve to a single answer even if it is using a Time Range for an analytic 
trend request. 

• COV histories 
COV (Change of Value) histories are often used in place of interval histories (records created at a fixed 
interval regardless of value change) for control points where the value does not change frequently. 
Using COV histories may consume less memory for storage. The records COV histories create indicate 
when the value of the control point changed, whereas, interval histories provide consistent record 
counts at the configured intervals, which makes analysis simpler at the expense of, perhaps, not 
knowing exactly when the value changed within the interval. 

• Best practices 
The framework provides powerful tools for managing large and small buildings with increasingly 
sophisticated control features. 

DataSourceBlocks and calculations 

The DataSourceBlock is the primary means to supply data to an algorithm. The block supports both value and 
trend requests. Logic blocks, of which there are many, provide the algorithm calculations. Each algorithm’s Wire 
Sheet contains these blocks. 

Figure 1. Example of a DataSourceBlock 

The Data property in the block does not reference specific end points in the station by slot path or handle ORD, 
rather it references a type of data available in the station based on metadata, which are implied or based on 
direct tags or tag groups, or another algorithm. 

An edit icon on the right side of the Data property launches a Select Data field editor. You use this editor to 
configure the desired tag or algorithm for the block to use. You may use metadata tags, such as hs:power or 
hs:zoneAirTempSensor, to reference specific data in the station, or you may reference another algorithm 
from the station using the alg: prefix, such as alg:CostCalculation. 

If the configured data are not available for the analytic request to process, the request uses the value from an 
object linked into the Fallback In slot as an alternate data source. This makes it possible to design an algorithm to 
use against components in the station that function the same but my not have identical data sources. For 
example, not all zones might have an unoccupied cooling setpoint (hs:zoneAirTempUnoccCoolingSp) so 
the DataSourceBlock may need to have a numeric constant block linked to the Fallback In slot. You may link the 
Fallback In slot from the output of other logic blocks, constant blocks, or another DataSourceBlock. 

The framework processes the data in the DataSourceBlock using these properties, which you can configure: 

• Aggregation combines the values from multiple data sources into a single value. 

• Rollup combines records from a single data source into less granular records. This typically only applies 
to trend requests, but may also apply to value requests where the algorithm contains a block like 
Runtime or Sliding Window, which processes a trend request. 

• Totalize applies to requests where the Data Source resolves to a history with ever increasing values 

Legal Notice

33



tagged with the hs:hisTotalized tag. 

• A Data Filter is an optional NEQL predicate used to configure data sources in the sub-tree of the node 
specified by the request. When a node meets the predicate, its sub-tree stops searching for additional 
values. 

Figure 2. Logic Folder used to organize logic blocks 

You may use a Logic Folder within the Algorithms component to organize these calculations. A logic folder is like 
an algorithm. It does not do anything itself, meaning that it contains no special code to perform calculations or 
evaluations, rather it executes all of the child blocks in its Wire Sheet, which must terminate in a final link to the 
Logic Folder’s Result block. 

When you nest a Logic Folder in an algorithm, you may think of it as a DataSourceBlock and link its Out slot to 
other blocks in the algorithm. 

• Aggregation configuration 
The Aggregation and Use Request Aggregation properties on the DataSourceBlock work together to 
configure the aggregation function and apply it to the data source. The aggregation function applies 
when the data source resolves to multiple components in the station and determines how to combine 
the multiple values. 

• Example: data aggregation 
One of the main benefits of using the framework is that you can create a single algorithm, which you 
can use many times in a station: in alerts, in control points with analytic proxy extensions and in Px 
views (widgets with various analytic bindings). This results in fewer components in the station (less 
heap memory usage) and minimizes redundant engineering (having to replicate the same Wire Sheet 
logic in many places in the same station). 

• Rollup configuration 
The Rollup and Use Request Rollup properties on the DataSourceBlock configure the rollup function 
and apply it when a trend request specifies an interval other than the interval used to collect the 
history data. Together they determine how to combine multiple sequential records in the history data 
into less granular intervals. For example, if the history Interval is 15 minutes and the trend request 
Interval is set to hour, the rollup function combines the four 15-minute records from each hour into a 
single hourly result. 

• Data filter configuration 
A data filter is an optional NEQL predicate used to identify data sources in the sub-tree of the node 
specified in the request. When a node meets the predicate, its sub-tree no longer searches for 
additional values. 

• Totalize configuration 
The Totalize property on the DataSourceBlock applies to requests where the data source resolves to a 
history with totalized (ever increasing) values and where the hs:hisTotalized tag is present. In 
general, when the Totalize property is false, the result returns delta values. When the Totalize property 
is true the result returns totalized values. There are some subtleties to be aware of. 

Legal Notice

34



• Unit conversion 
A data source supplied using a unit of measure that is not compatible with the result block’s unit of 
measure requires a units conversion. 

Parent topic: Algorithms, alerts and alarms 

Aggregation configuration 

The Aggregation and Use Request Aggregation properties on the DataSourceBlock work together to configure 
the aggregation function and apply it to the data source. The aggregation function applies when the data source 
resolves to multiple components in the station and determines how to combine the multiple values. 

When Use Request Aggregation is false and the Aggregation property is not configured on the DataSourceBlock 
(set to its default value of First), the DataSourceBlock uses the aggregation function as defined in the applicable 
Data Definition, unless there is no Data Definition, in which case the block uses the default First function. When 
Use Request Aggregation is false and the Aggregation property is configured, the block uses the Aggregation 
property’s value. 

When Use Request Aggregation is true, the block uses the Aggregation property defined in the request (analytic 
proxy extension, analytic binding, etc.), unless the request does not specify the Aggregation property, in which 
case the block uses the algorithm's Aggregation property value. 

The following table demonstrates how the actual aggregation function used by an analytic model may vary 
depending on how you configure the Use Request Aggregation property on the DataSourceBlock along with the 
other Aggregation properties that are available for configuration. 

Table 1. Aggregation configuration 

DataSourceBlock Data 
Definition 

Request Algorithm Actual 

Use Request 
Aggregation 

Aggregation Aggregation Aggregation Aggregation aggregation function used by the 
algorithm 

false not 
configured 

not configured Sum Max First (default) 

false Last not configured Sum Max Last 

false Last Avg Sum Max Avg 

true Last Avg Sum Max Sum 

true Last Avg not 
configured 

Max Max 

The bold options in the table highlight which option takes the priority based on the configuration choices in this 
example. 

Parent topic: DataSourceBlocks and calculations 

Example: data aggregation 

One of the main benefits of using the framework is that you can create a single algorithm, which you can use 
many times in a station: in alerts, in control points with analytic proxy extensions and in Px views (widgets with 
various analytic bindings). This results in fewer components in the station (less heap memory usage) and 
minimizes redundant engineering (having to replicate the same Wire Sheet logic in many places in the same 

Legal Notice

35



station). 

In most cases, you design an algorithm that runs against a specific piece of equipment (AHU, VAV, FCU, boiler, 
chiller, electric meter, etc.), in which case, you are likely to have a single matching component for each data 
source in the algorithm. You may run that same algorithm against ancestor nodes in the station to show analytic 
results at a less granular level, such as for all equipment on a floor, all equipment in a building or all VAV zones 
associated with a specific AHU. When you run the algorithm against those ancestor nodes you must understand 
how the analytics engine aggregates the data. Typically, the default is to aggregate the data sources (inputs) to 
the algorithm and process the algorithm one time; however, this might not return the desired results. 

Consider a tree of components in a folder named BuildingX (Building1 in this example): 

Figure 1. Building example with tags identified 

Building1 has the b:Building marker tag, and two numeric points: 

• Point MainKw has a:a and hs:power marker tags. 

• Point PowerLimit has a:a and b:PowerLimit marker tags. 

The current values of the points are shown in the table to the right in the screen capture above. 

The Wire Sheet for Building 1’s algorithm is called HighPower: 

Figure 2. Building 1’s HighPower algorithm 

This algorithm has DataSourceBlocks for two inputs based on two tags associated with the points: hs:power 
and b:PowerLimit. The algorithm result returns true (value = 1) if MainKw > PowerLimit, otherwise it 

Legal Notice

36



returns false (value = 0). 

Extending this example, the customer might want to know in how many of their campus buildings they can 
currently detect a high-power fault? To answer this question, you would use a Numeric Point on an Analytic 
Proxy Ext to run the alg:HighPower algorithm with the Aggregation property configured as Sum. You would 
configure the property sheet for the extension’s Numeric Point as follows: 

Figure 3. Algorithm with Aggregation = Sum 

In this case, the result (Out) is 1.0 at the campus level because the DataSourceBlocks in the algorithm have 
their Use Request Aggregation properties set to false and their Aggregation properties set to null. With these 
settings, the algorithm defaults to the First aggregation function. Building1’s MainKw point reports 450, which is 
greater than the building’s PowerLimit of 400, so the result is true (a value of 1). This is not the desired result 
since two buildings currently have power values greater than the power limit. 

The DataSourceBlocks in the algorithm could be configured with Aggregation = Sum, but that would sum all of 
the MainKw point values for a single power value and all of the PowerLimit values for a single setpoint and then 
process the algorithm one time. It is very unlikely that summing all of the point values and running the algorithm 
once will return the expected answer. 

The BuildingX folders have a b:Building marker tag. To control where the algorithm is executed, the Data 
Filter property on the Analytic Proxy Ext can be configured with a NEQL predicate. Then, instead of aggregating 
all of the data sources (inputs) at the campus level and running the algorithm one time, each BuildingX folder 
can run the algorithm and the results of the algorithm (output true=1 or false=0) for each BuildingX folder can be 
summed together. 

Figure 4. Algorithm with Data Filter configured 

Legal Notice

37



In this situation, the Data Filter NEQL predicate needs to be an ‘or’ statement that includes a tag to identify each 
data source required in the algorithm and a tag to identify the base components (nodes that are children, 
grandchildren, etc.). This gives the root node specified by the Analytc Proxy Ext’s Node property something to 
run the algorithm against. In this example, the algorithm runs against each of the four BuildingX folders and 
returns a value of 2.0 because Building1 and Building4 currently have high power levels. Widgets with analytic 
bindings also have a Data Filter property, which you can configure in the same fashion. 

Parent topic: DataSourceBlocks and calculations 

Rollup configuration 

The Rollup and Use Request Rollup properties on the DataSourceBlock configure the rollup function and apply it 
when a trend request specifies an interval other than the interval used to collect the history data. Together they 
determine how to combine multiple sequential records in the history data into less granular intervals. For 
example, if the history Interval is 15 minutes and the trend request Interval is set to hour, the rollup function 
combines the four 15-minute records from each hour into a single hourly result. 

When the Use Request Rollup value on the DataSourceBlock is false and the Rollup property on the block is not 
configured, the DataSourceBlock uses the rollup function defined in the applicable Data Definition, unless there 
is no Data Definition, in which case the block uses the default First function. When the Use Request Rollup value 
is false and the Rollup property is configured, the block uses the Rollup property value. 

When the Use Request Rollup value is true, the block uses the rollup function defined in the request (analytic 
proxy extension, analytic binding, etc.), unless the request does not specify the rollup function, in which case the 
block uses the algorithm's Rollup property value. 

The following table is an example of how the actual rollup function used can vary depending on how you 
configure the Rollup properties. 

Table 1. Rollup configuration 

DataSourceBlock Data Definition Request Algorithm Actual 

Use Request Rollup Rollup Rollup Rollup Rollup rollup function used by the algorithm 

false not configured not configured Sum Max First (default) 

Legal Notice

38



DataSourceBlock Data Definition Request Algorithm Actual 

false Last not configured Sum Max Last 

false Last Avg Sum Max Avg 

true Last Avg Sum Max Sum 

true Last Avg not configured Max Max 

Parent topic: DataSourceBlocks and calculations 

Data filter configuration 

A data filter is an optional NEQL predicate used to identify data sources in the sub-tree of the node specified in 
the request. When a node meets the predicate, its sub-tree no longer searches for additional values. 

When Use Request Data Filter on a DataSourceBlock is false and the Data Filter property is configured, the block 
uses the value of the Data Filter property as defined in the DataSourceBlock. 

When Use Request Data Filter is true, the block uses the value of the Data Filter property as defined in the 
request. 

If Data Filter is not defined, the DataSourceBlock filters no data. 

Parent topic: DataSourceBlocks and calculations 

Totalize configuration 

The Totalize property on the DataSourceBlock applies to requests where the data source resolves to a history 
with totalized (ever increasing) values and where the hs:hisTotalized tag is present. In general, when the 
Totalize property is false, the result returns delta values. When the Totalize property is true the result returns 
totalized values. There are some subtleties to be aware of. 

When Use Request Totalize is false on the DataSourceBlock, and the block’s Totalize property is configured, the 
block uses the value of the Totalize property. When the Use Request Totalize is true, the block uses the Totalize 
property as defined in the request. If the Totalize property is not defined, the block uses the default value of 
true. 

The table demonstrates how the totalize function may or may not apply based on the configuration options. 

Table 1. Totalize configuration 

DataSourceBlock Request Actual 

Use Request Totalize Totalize Totalize totalize function 

false not configured false true (default) 

false false true false 

true true false false 

Parent topic: DataSourceBlocks and calculations 

Legal Notice

39



Unit conversion 

A data source supplied using a unit of measure that is not compatible with the result block’s unit of measure 
requires a units conversion. 

For example, a Numeric Point ZoneTemp with hs:zoneAirTempSensor and a:a marker tags is configured 
with units facets of temperature °F and precision 1. If its DataSourceBlock Unit Conversion property is 
configured with temperature °C, the block converts a source value of 62.8 °F to an out value of 17.1 °C. The 
configured units must be convertible, otherwise the algorithm does not process. 

Parent topic: DataSourceBlocks and calculations 

Creating an algorithm 

Algorithms are formulas created on a wire sheet that enable calculations, where the framework can combine 
real-time and historical data to produce values and analyze trends (time series). 

All objects are tagged, hierarchies created, and relationships established. 

1. In the station’s Nav tree, expand Config > Services > AnalyticService, and double-click Algorithms. 
The Algorithm Manager opens to the Database view. 

2. To group algorithms, create a folder by clicking New Folder at the bottom of the manager and supplying 
a descriptive name. 

3. Do one of the following 
a. To create a new algorithm, click New, select the number of algorithms to add, and click OK. 
b. To edit an existing algorithm, select it in the Database table and click Edit (or double-click the 

row in the table). 
The New or Edit window opens. 

4. Give the algorithm a name, make any changes to the default properties and click OK. 

The framework requires data policies for these algorithm properties: 

• Aggregation – defines how to combine current values from multiple data sources. 

• Rollup – defines how to combine the multiple values contained in a single interval of a trend. 

• Min and Max interval – some data may have limitations that establish the acceptable 
minimum and maximum period to use for rollups. For example, heat and cooling degree days 
should not have an interval of less than one day. 

Legal Notice

40



The algorithm and properties display as a row in the Database table. 

• Defining the data source 
Tags and tag groups identify the data sources that feed an algorithm’s calculations. Tags and tag groups 
replace the ORDs that in standard wire sheets (not algorithm wire sheets link blocks. A Data Source 
Block defines the tag that supplies the data for processing and charting. 

• Filtering algorithm input data 
An algorithm has one or more Data Source Blocks that have several properties (Data, Use Request Data 
Filter, Data Filter). The framework uses these properties to evaluate which components in the station 
have the required data available to process the algorithm. The Data property defines the required input 
using a tag or tag group. The Data Filter is an optional NEQL predicate used to identify data sources in 
the sub-tree of the node against which the algorithm is processing. This topic provides steps for 
configuring an algorithm’s Data Source Block properties. 

• Logic 
You add logic to an algorithm by dragging or copying constants and blocks from the analytics palette to 
the Wire Sheet, configuring properties and linking the blocks. 

• Using algorithm results in standard logic 
The output from an algorithm can feed back into a station to optimize energy, reduce faults, or perform 
any other task based on historical and current conditions. For example, if an algorithm determines that 
a hot water valve is open while room temperature is high for an hour or more, standard Wire Sheet 
logic can close the hot water valve. This type of closed-loop analytics uses a control point with an 
Analytic Proxy Extension from the Points sub folder of the analytics palette.. 

• Example: Monitoring temperature and humidity 
This task creates an algorithm to monitor temperature and humidity, including defining appropriate 
units, Metric or English. 

• Example: Removing unwanted data 
From time to time, a point does not report a plausible realistic value. For example, a value may get 
corrupted coming over the network. This erroneous value could be a very high or a negative number. 
Such data can render Px views and charts meaningless, especially if you are using aggregation or rollup, 
or if you are passing the data to another function. Typically, an organization may have to send the data 
outside of the system to cleanse it or manually modify the histories. This topic documents two 
algorithms. The first filters out corrupt data. The second not only filters the data out, but also changes 
the data to a valid value. 

• Example: Fault detection 
This example demonstrates how to set up fault detection logic in a single source algorithm instead of 
having to replicate the fault detection logic in the Wire Sheet of every building. 

Parent topic: Algorithms, alerts and alarms 

Defining the data source 

Tags and tag groups identify the data sources that feed an algorithm’s calculations. Tags and tag groups replace 
the ORDs that in standard wire sheets (not algorithm wire sheets link blocks. A Data Source Block defines the tag 
that supplies the data for processing and charting. 

You are connected to a station. 

A single algorithm can run against data collected from an entire building. For example, assume your building has 
100 air handling units and an algorithm to monitor their performance. When you add 50 more units, and tag 
each unit appropriately, without any additional effort on your part the original algorithm applies to all 150 units. 

1. To open the Algorithm Manager, expand the AnalyticService and double-click Algorithms. 
The Algorithm Manager opens. 

2. Do one of the following: 
a. To start with a pre-configured algorithm from the library, open the analytics-lib palette, expand 

the Algorithm node and version (English or Metric), and drag an algorithm to the Algorithm 
Manager. 

b. To build an algorithm from scratch, click the New button, click the OK button in the New 

Legal Notice

41



window, in the subsequent window configure the Name and any other desired properties, 
then click the OK button. 

3. Right click the algorithm in the Algorithm Manager view and select Views > AX Wire Sheet, or double 

click the wire sheet icon ( ) for the algorithm in the Views column. 
The Wire Sheet for the new algorithm opens. A new algorithm contains a single result block. 

4. For a new algorithm, open the analytics palette, drag a DataSourceBlock to the algorithm’s Wire Sheet, 
and click OK. To open the data source property sheet, double-click the block and, if necessary, expand 
the window to see all properties. 
You do not need to name a Data Source Block but it may provide context to other users when reviewing 
the algorithm. 

5. Go to the Property Sheet of the algorithm and click the Facets property (double-chevron icon in the 
field editor) and assign the appropriate unit of measure to use for output values. 
No unit conversion from a Data Source Block occurs unless the algorithm defines its unit of measure. If 
algorithms are chained together, the next algorithm in the chain defaults to the previous algorithm’s 
units. If no units are defined in the previous algorithm, the next algorithm defaults to the units defined 
in its Data Source Block. 

6. Configure any other properties and click Save. 

Parent topic: Creating an algorithm 

Filtering algorithm input data 

An algorithm has one or more Data Source Blocks that have several properties (Data, Use Request Data Filter, 
Data Filter). The framework uses these properties to evaluate which components in the station have the 
required data available to process the algorithm. The Data property defines the required input using a tag or tag 
group. The Data Filter is an optional NEQL predicate used to identify data sources in the sub-tree of the node 
against which the algorithm is processing. This topic provides steps for configuring an algorithm’s Data Source 
Block properties. 

All objects are appropriately tagged. Algorithms exist. 

1. To locate the desired algorithm, expand the AnalyticsService folder and double-click Algorithms. 
2. To open the algorithm Wire Sheet, right click the algorithm in the Algorithm Manager view and select 

Views > AX Wire Sheet, or double click the wire sheet icon ( ) for the algorithm in the Views column. 
3. To open the properties for the data source, double-click a Data Source Block logic block. 
4. To filter source input, configure one (or more) of the following DataSourceBlock properties: 

a. Edit the Data property to identify a different source tag. 
b. Edit the Data Filter property. 

Note: Data filtering applies at the time an algorithm begins processing. The ability to filter is also available in Px 
bindings, however, if the DataSourceBlock Use Request Data Filter property is false, the framework ignores the 
Data Filter property in the binding. 

Parent topic: Creating an algorithm 

Logic 

You add logic to an algorithm by dragging or copying constants and blocks from the analytics palette to the Wire 
Sheet, configuring properties and linking the blocks. 

Figure 1. Example algorithm 

Legal Notice

42



Each algorithm, typically, has at least one DataSourceBlock, which is linked to other algorithm blocks. Blocks are 
chained together with links from the output of one block to an input on the next block. It is easy to mis-connect 
an Out to an In. Make sure you connect from the Out slot, and not from another slot. 

To open a block’s Property Sheet, double-click the block. TheNiagara Analytics Reference and online Help system 
document the properties for each specific block. If you edit a property, click Save. 

The UniMath and BiMath objects indicate the number of inputs. Something similar is true for the switches. You 
must connect all inputs required for each math block. For example, do not use a bi block if you have only one 
input. 

To add comparison logic, drag a BiSwitch from the palette’s Switches folder. Using this block you define the 
Operator (Greater Than, Less Than, etc.), then connect the appropriate Out slot(s) to it. 

Some blocks provide actions. Right-click the block and select the action. For example, right-clicking a constant 
block assumes you want to set its value. 

Parent topic: Creating an algorithm 

Using algorithm results in standard logic 

The output from an algorithm can feed back into a station to optimize energy, reduce faults, or perform any 
other task based on historical and current conditions. For example, if an algorithm determines that a hot water 
valve is open while room temperature is high for an hour or more, standard Wire Sheet logic can close the hot 
water valve. This type of closed-loop analytics uses a control point with an Analytic Proxy Extension from the 
Points sub folder of the analytics palette.. 

Standard logic already exists. 

1. Open the analytics palette and expand the Points folder. 
2. Go to the Wire Sheet view of a component in the station where you plan to configure the logic 

sequence. 
3. Drag an analytics NumericPoint to the Wire Sheet. 

This action drags an object from the analytics palette to a non-analytics wire sheet, a powerful feature 
of the software. 

4. Right click the numeric pointand select Views > AX Property Sheet or Views > Property Sheet, then 
expand the proxy extension property. 
A new Analytic Proxy Extension status is in fault because the Data property is not configured. The 
Pollers component under the AnalyticService includes a frozen property named Default, which is a 
cyclic poller configured for 5 minutes. A new Analytic Proxy Extension Poller property's default value 
maps to this default poller and may need to be configured to a dynamic, user-added poller. 

5. Configure the Data property to reference the desired tag, tag group or algorithm. 
6. Configure the Node property to reference the component in the station (config or hierarchy space). 

The framework uses the value of the Node property as the base from which to search for the required 
data 

7. Configure the Poller property to specify how often the framework automatically processes the 

Legal Notice

43



configured Data property and updates the control point's Out slot value. 
When the Poll action is invoked either manually or automatically by the configured Poller, the 
framework updates the Analytic Proxy Extension’s Last Poll property with the current station time. 

Parent topic: Creating an algorithm 

Example: Monitoring temperature and humidity 

This task creates an algorithm to monitor temperature and humidity, including defining appropriate units, Metric 
or English. 

1. Create the algorithm, give it a name, and configure its properties. 
2. With the algorithm in the Algorithm Manager, select the Wire Sheet view, open the analytics palette, 

and add logic, including two DataSourceBlocks and a Psychrometric block. 
The algorithm should look something like this: 

3. Define the Data name when the Poll action is invoked either manually or automatically by the 
configured Poller for the first DataSourceBlock as hs:temp, and the Data property for the second 
DataSourceBlock as hs:humidity. 

4. Add a Psychometric block (under General Blocks) and select the units to use. 

The system converts the raw data to the units you require. For information about Metric and English 
temperature values refer to the Niagara Analytics Reference manual. 

5. Configure the Psychrometric block’s Units property to the desired English or Metric value. 

Legal Notice

44



6. Link the output and input slots, refresh cache, and save the station. 
7. To visualize the results, add a Bound Table with an Analytic Table Binding to a Px view. 

8. Configure the Analytic Table Binding with data = alg:Psychrometric_alg, set node to reference a 
component in the station with the required hs:temp and hs:humidity data available, and set 
timeRange = today. 

The data display in a list. 

Parent topic: Creating an algorithm 

Legal Notice

45



Example: Removing unwanted data 

From time to time, a point does not report a plausible realistic value. For example, a value may get corrupted 
coming over the network. This erroneous value could be a very high or a negative number. Such data can render 
Px views and charts meaningless, especially if you are using aggregation or rollup, or if you are passing the data 
to another function. Typically, an organization may have to send the data outside of the system to cleanse it or 
manually modify the histories. This topic documents two algorithms. The first filters out corrupt data. The 
second not only filters the data out, but also changes the data to a valid value. 

Demand Range Filter Algorithm 

This algorithm determines if a value falls within a valid range. 

Figure 1. Demand range filter algorithm flowchart 

Wire sheet view 

Figure 2. Demand range filter used to cleanse erroneous data 

Legal Notice

46



Parent topic: Creating an algorithm 

Example: Fault detection 

This example demonstrates how to set up fault detection logic in a single source algorithm instead of having to 
replicate the fault detection logic in the Wire Sheet of every building. 

Consider a BooleanPoint set up under each BuildingX folder with an analytic proxy extension to run the 
alg:HighPower algorithm at some frequency. 

Figure 1. Proxy Extension set up to return an alarm 

This configuration returns true in the Out slot, which indicates that an unacknowledged alarm condition for a 
specific Building (Bulidng 1 in this case) on the Campus.. 

To know how many buildings on your campus currently have a high power fault detection, you can add a 
NumericPoint to the Campus folder with an analytic proxy extension, run the same alg:HighPower, but this 
time with the Aggregation property set to Sum. 

Figure 2. Proxy Extension configured with Aggregation set to Sum 

Legal Notice

47



In this case, the algorithm returns a result of 1 at the campus level because the DataSourceBlocks in the 
algorithm have the Use Request Aggregation property set to false and the Aggregation property set to null. This 
configuration causes the algorithm to default to First for the aggregation function. If Building1 is in the first slot 
position and its MainKw value of 450.0 is greater than its PowerLimit of 400, the algorithm returns true (value 
of 1). The alarm condition exists. 

The DataSourceBlocks in the algorithm could be configured with Aggregation = Sum, but that would sum all of 
the MainKw point values for a single power value, sum all of the PowerLimit values for a single setpoint and, 
then, process the algorithm one time. It is very unlikely that summing all of the point values and running the 
algorithm once will return the expected result. 

The BuildingX folders have a b:Building marker tag. You can configure the Data Filter property on the analytic 
proxy extension with a NEQL predicate to control where the algorithm is executed. Instead of aggregating all of 
the data sources (inputs) at the campus level and running the algorithm one time, you can configure the 
algorithm to run at each BuildingX folder and sum the results of the algorithm (output true=1 or false=0) 
together. 

Figure 3. Use of a NEQL predicate to control algorithm execution 

This Data Filter NEQL predicate needs to be an ‘or’ statement, which includes a tag that identifies each data 

Legal Notice

48



source and a tag that identifies the base components (nodes that are children, grandchildren, etc. under the root 
node specified by the analytic proxy extension) to run the algorithm against. In this case, the algorithm runs 
against each of the four BuildingX folders and returns a value of 2 because Building1 and Building4 currently 
have high power levels. 

Widgets with analytic bindings also have a Data Filter property, which you can configure in the same fashion. 

Figure 4. Binding with its Data Filter configured 

Alerts also have a Data Filter property, but it may not be used in the same way as the same property does in an 
analytic proxy extension and analytic binding. Consider an alert that is configured to run the same 
alg:HighPower against the Campus folder configured with the Roots property. 

Figure 5. Analytic alert configured with the Roots property 

This results in the following Alerts Node View. 

Figure 6. Alerts Node View 

Legal Notice

49



This view shows that the algorithm is being run against many nodes under the Campus folder. It is likely that you 
only want the alert to be run against the BuildingX folders. 

The alert has a Node Filter property, which also accepts a NEQL predicate, such as b:Building with which to 
configure the alert so that it only runs the algorithm against a node with the b:Building marker tag. 

Figure 7. Alert configured with a Node Filter 

Now the Alert Nodes View shows the algorithm only running against each of the BuildingX folders. 

Figure 8. Alert Nodes View after running against a limited number of nodes 

Parent topic: Creating an algorithm 

Creating an alert 

An alert has a Data property the same as does an analytic proxy extension and analytic binding, which you can 
technically configure with a tag or tag group; however, the intention of an alert is to configure the Data property 
to reference an algorithm, which has some fault detection logic that returns a Boolean value. The Alert's Poller 
property configures how often the Alert automatically processes the configured algorithm. This updates the 
applicable properties on the Alert component. When the result of processing the algorithm returns a true value, 
an alert condition exists. The Analytic Alert Manager view on the Alerts component summarizes the current 

Legal Notice

50



state of all alerts. The Alert Nodes View on an individual alert provides the details for each alert. 

You may also configure an alert to generate an alarm record, Niagara, which routes through normal mechanisms 
(console recipients, email recipients, etc.). If actual alarm records are needed it is likely better to configure 
Boolean points with an analytic proxy wxtension to process the desired fault detection algorithm, and use a 
standard alarm extension on the Boolean point. 

1. Double-click AnalyticService > Alerts. 
The Analytic Alert Manager opens. 

2. Do one of the following: 
• To create a new alert, click New. 
• To modify an existing alert, select the alert and click Edit or double-click the alert in the row. 

The New or Edit window opens. 

Pay special attention to these properties: 

• Data defines the algorithm that returns true or false. When true, the alert exists; when false, 
no alert exists. 

• Roots defines where to collecting data for the alert. This alert runs against all devices under 
the Drivers/BacnetNetwork/Global folder. 

• Node Filter reduces the number of nodes to search. n:device limits alerts to devices. This is an 
appropriate place to use a NEQL predicate. 

• Alert Mode provides two settings. Alert after, configures when to generate the alert. The 
second drop-down list identifies how many of what to use to generate the alert. 

Occurrences generates an alert after the selected number of the same event occurs. 

Seconds, Minutes and Hours define how much continuous time must elapse where the 
algorithm result is true for an alert to be generated. This value is part of the total cost 
calculation. 

• Cost associates a currency value with each alert occurrence. 

• Poller defines how frequently to run the alert. 

Legal Notice

51



• Alarm controls alarm generation. The default is false (no alarm generation). 

If you are testing, consider creating an Analytics Smart Alarm Class and send all framework alarms to 
this class as an easy way to differentiate between alarms coming from a standard alarms extension and 
the alarms coming from the framework. 

The rest of the properties are described in the Niagara Analytics Reference. 

3. Configure properties and click OK. 
4. To complete the configuration, right-click the AnalyticService and click Actions > Refresh Cache. 

This step is required any time you create a new or edit an existing alert. 
5. After creating the alert, double-click it in the Nav tree. 

The Alert Nodes View opens. 

This view displays the current state of all points monitored by the alert. 

6. If the view is empty, right-click the AnalyticService and click Actions > Refresh Cache Full 
If you still do not see the points in the table, click Refresh at the bottom of the window. 

Parent topic: Algorithms, alerts and alarms 

Viewing an alert in the alarm console 

Alerts can generate alarms, which appear in the alarm console. 

An alert has been configured to display the source node. 

1. Access the alarm console. 
The alarm console opens. 

The screen capture shows an alarm that was generated by an alert. The alarm console’s Source column 
identifies the source of the alert: FolderStation1 as a node in the Nav tree and AnalyticAlert 
describes what happened. The Message Text column displays any notes associated with the alert. 

If the alert was defined incorrectly, the default BFormat (%node.navName%_%alert.name%) displays in 
the Source column instead of the alert source information. 

2. Double-click the alarm record generated by the alert. 
The Open Alarm Sources view opens. 

This view filters the alarms to display only alarms generated by alerts. 

3. To display additional information or to add your own comments, select the alarm row and click the 

Legal Notice

52



Notes button. 

Parent topic: Algorithms, alerts and alarms 

Real-time request configuration 

The framework provides complex yet flexible methods to configure the application, which may sometimes give 
you seemingly unexpected results It is important to understand the various ways properties in an analytic 
request might be set or overridden. These examples set up a real-time aggregation in different ways to 
demonstrate how the framework evaluates settings. 

Each property, including Time Range, Rollup, Interval, Aggregation, Totalize and Missing Data Strategy has a 
default setting, which the framework uses if you do not explicitly set the property. 

Consider the following station real-time configuration where there are four BFolder components named 
BuildingX each with a NumericPoint named MainKw. The MainKw points have the a:a and hs:power marker 
tags. Each point has returned a different value. 

Figure 1. Example of four slots to aggregate 

There are a number of ways to submit an analytic request, such as using a control point with an analytic proxy 
extension in the station, a label in a Px with an analytic value binding, a data definition, or an algorithm with a 
Data Source Block. 

Aggregation combines multiple data sources into a single result using some function like Sum, Avg (average), Min 
(minimum), Max (maximum), etc. The Aggregation property on the Proxy Ext or binding defines the function to 
use. 

Figure 2. Default result 

Legal Notice

53



The example above does not explicitly set the Aggregation property, and it is not obvious from looking at this 
property sheet, that if you do not configure the Aggregation property, it defaults to First, which returns the first 
value in the combination. 

When the framework resolves this example request, it returns an Out value of 510.0 kw, which is the value 
reported by the first data source (Building1), that is, the first component in slot sheet order. 

Reordering the BuildingX folders under the Campus folder so that Building2 is now before Building1 in the slot 
sheet changes the result. 

Figure 3. Reordered slots 

After invoking the refresh cache action on the AnalyticService, and without any change to the Aggregation 
property on the Proxy Ext, the aggregation result is now 355.2 KW because Building2’s point with the 
hs:power tag is now the first slot on the Campus slot sheet. 

Figure 4. Result after reordering the slots 

Legal Notice

54



Tip: Explicitly configuring each configuration property based on your requirements is a good idea. 

• Aggregation defined by data definition or proxy extension 
This topic expands on the aggregation request example using the same four BuildingX and MainKw 
points set up previously. 

• Aggregation defined by an algorithm 
Algorithms also have properties for Aggregation and Rollup, which default to First. These examples use 
the same four BuildingX and MainKw points set up previously. 

Parent topic: Algorithms, alerts and alarms 

Aggregation defined by data definition or proxy extension 

This topic expands on the aggregation request example using the same four BuildingX and MainKw points set up 
previously. 

The data definition is an optional component used to configure default properties for a given piece of data in 
one place. Using this component eliminates or reduces the additional configuration required on analytic proxy 
extensions and widget (Chart, Table, Label) bindings. 

Consider a data definition for hs:power. In this example, you only need to configure Aggregation and Rollup. 

Figure 1. Data definition for aggregation 

Legal Notice

55



In the screen capture, Aggregation is configured as Sum and Rollup is configured as Avg. Other properties, such 
as the Missing Data Strategy, Outlier and Raw Data Filter are useful but only applicable to analytic requests with 
trend data. 

Figure 2. Result of the Sum function 

Once the framework processes the analytic request (the interval poller on the analytic proxy extension triggers 
every five seconds) the Out slot updates and displays the sum of the four MainKw point values (2352.8). 

Notice that the Aggregation property of Sum on the data definition has overridden the default Aggregation 
function of First. 

Now, instead of using a data definition to configure Aggregation, you can explicitly configure the Aggregation 
property on the Proxy Ext. 

Figure 3. Aggregation property configured on the Proxy Ext 

Legal Notice

56



In the screen capture, Aggregation is set to Max, which should override the data definition Aggregation property. 
The result in the Out slot is now 865.5. 

Parent topic: Real-time request configuration 

Aggregation defined by an algorithm 

Algorithms also have properties for Aggregation and Rollup, which default to First. These examples use the same 
four BuildingX and MainKw points set up previously. 

Figure 1. Aggregation algorithm 

The screen capture shows the default values for Aggregation and Rollup. 

Consider this very basic algorithm, which has a single data source with the data configured to hs:power and 
linked to a result block: 

Figure 2. Algorithm with a single data source 

Legal Notice

57



The Data Source Block has a property named Use Request Aggregation with a default value of false, and an 
Aggregation property with a null value (not explicitly configured). 

Figure 3. Proxy extension with Data property configured 

Using the same control point with the analytics proxy extension and changing the Data property from 
hs:power to alg:Power results in an Out value that represents the sum of the four points (2352.8). 

This happens even though the Aggregation property on the proxy extension is configured as Max, and the Data 
Source Block in the algorithm is configured to ignore the Aggregation property in the request, which causes it to 
default to the hs:power data definition. 

You can configure the Aggregation function explicitly on the Data Source Block. 

Figure 4. Aggregation on the Data Source Block configured to Min 

Legal Notice

58



This explicit configuration setting Aggregation to Min on the algorithm’s Data Source Block overrides the data 
definition Aggregation, which is set to the Sum function. 

Figure 5. Result after applying the algorithm 

The Out slot now reports the minimum value of the four points, 355.2. This means that explicit configuration of 
the Aggregation using the Wire Sheet’s Data Source Block has overwritten the Data property (alg:Power) and 
Aggregation (Max) as defined on the proxy extension. 

Now go back to the algorithm’s Data Source Block and enable Use Request Aggregation. 

Figure 6. Use Request Aggregation enabled on the Data Source Block 

Changing Use Request Aggregation to true configures the data source to instead use the Aggregation property 
value as defined by the analytic request and configured on the analytic proxy extension. 

Figure 7. Analytic request as configured on the analytic proxy extension. 

Legal Notice

59



The control point value now reports the maximum of the four points (865.5) because the Aggregation function 
configured by this analytic proxy extension property sheet is set in the analytic request to the algorithm, and the 
algorithm’s Data Source Block is configured to use the Aggregation function from the request, which overrides 
the data definition for hs:power. 

Important: As mentioned in the introduction to these examples, each property, including Time Range, Rollup, 
Interval, Aggregation, Totalize and Missing Data Strategy has a default setting, which Analytics uses if you do not 
explicitly set the property. Each property should behave similarly to the Aggregation function as far as how the 
override behavior works when you configure the property on a data definition, analytic proxy extension, binding 
or Data Source Block. 

Parent topic: Real-time request configuration 

Trend Interval defined in a binding 

Interval is a property used in conjunction with analytic trend requests to specify the time window to combine 
records using the configured Rollup function. The framework handles the Interval property in special ways 
depending on where you configure it. 

Widgets, such as a table or chart use the Analytic Web Bindings function similarly to the way standard Web Chart 
sampling works, where sampling type is a function like analytic Rollup and the desired period is a window of 
time like analytic Interval. Consider a NumericPoint with associated history data (an actual history extension or 
imported from a remote station that has an n:history tag mapping to the imported history), where the history 
records are coming in at one hour intervals and the value is totalized (ever increasing) by a fixed value of 25 for 
each record. The point has tags including hs:hisTotalized, hs:energy and a:a marker tags. The px view 
includes a web widget (analytic web chart) with an Analytic Web Chart Binding: 

Figure 1. WebWidget configured for a NumericPoint 

Legal Notice

60



The binding is configured with a Rollup function of Sum and a Time Range of Yesterday, but does not explicitly 
configure the Interval. Analytics automatically picks a best fit interval based on the time range and available data 
records. In this case, it uses the raw collection interval of one hour. As expected, the value of each record is 25. 

Figure 2. Chart produced with the default Interval of one hour 

Simply changing the Time Range for the chart to Last Week instead of Yesterday results in a different automatic 
Interval of six hours instead of one hour. 

Figure 3. Chart produced with the default Interval of six hours 

Legal Notice

61



In this example, the framework plots records at midnight, 6 am, noon and 6 pm for each day. Each record value is 
150, which is the record value of 25 * 6 records in the interval window. This is just one example of how changing 
the Time Range likely results in different automatic intervals being applied. Explicitly configuring the Interval in 
the binding takes precedence over these default automatic interval values. 

Tip: To ensure that your trend result is what you expect, always configure the Interval in your binding. 

Parent topic: Algorithms, alerts and alarms 

Trend Interval defined in a proxy extension 

The framework handles the Interval property on the AnalyticProxyExt in a special way because, ultimately, the 
extension must resolve to a single answer even if it is using a Time Range for an analytic trend request. 

Unlike a table or chart, which can display multiple values, the control point only has a single Out slot. Configuring 
the Interval property may impact the final result because the data (tag or algorithm) might produce different 
results when the framework rolls up history records into fewer records to be processed by the algorithm. In this 
case, the framework rolls up the historical records and runs the rolled up values through the algorithm. Then, 
running the algorithm many times rolls up everything into a single result. 

Consider a power history for Yesterday where there are five records (highlighted below) with a value greater 
than 1,000 kW. 

Figure 1. NumericPoint table reporting kW values from Yesterday 

Notice that there are 96 records and the table is sorted on the Value column, not the Timestamp column. 

The following basic algorithm evaluates whether the power value is greater than 1,000 kW. 

Figure 2. Algorithm to evaluate kW greater than 1000 

Legal Notice

62



In the screen capture that follows, the control point, HighPowerCount, is configured with an AnalyticProxyExt. 

Figure 3. AnalyticProxyExt configured with Interval left at the default 

This configuration queries the HighPower algorithm for a Time Range of yesterday and a Rollup of Sum, which 
sums the results (false = 0, true =1) of running the algorithm 96 times once with each 15-minute record in the 
Time Range. The result is the expected 5.0 based on the history table above. 

If not explicitly configured, Interval defaults to Fifteen Minutes, which just happens to match the collection 
frequency of the history, so, by default each record in the example above was actually processed. 

Figure 4. AnalyticProxyExt configured with Interval explicitly set 

Legal Notice

63



If you explicitly set the Interval to Hour, the framework rolls up the four 15-minute records from each hour into a 
single value, then processes those 24 rolled-up values once each through the algorithm. Finally, it sums the 
results of the 24 algorithm executions returning only 2.0. 

This result is probably confusing. 

The Data Source Block property Use Request Rollup is false and the Rollup is null, so even though the analytic 
trend request specifies the Interval as Hour and Rollup as Sum, the Data Source Block uses the default Rollup 
function of First to return the result. Apparently, in this data set there were only two records in yesterday for the 
top of an hour (1:00 am, 2:00 am, etc.) where the value was greater than 1,000. 

You could configure the Data Source Block to explicitly apply the Rollup function of Sum or to use the Rollup 
function from the analytic request. 

Figure 5. Data Source Block explicitly configured with a Rollup of Sum 

The screen capture shows the Rollup function of Sum explicitly configured in the Data Source Block. However, 
this configuration still does not yield the desired result because the high limit is hard coded in the algorithm and 
does not get rolled up like the power value does. 

Figure 6. AnalyticProxyExt still with an invalid result 

Legal Notice

64



Using the bql query: bql:history:HistoryRollup.rollup(history:RollupInterval ‘hourly’), the request 
returned 18 because there were 18 hourly intervals yesterday where the sum of the four values is greater than 
the hard coded high limit of 1,000 as shown below. 

Figure 7. NumericPoint showing 18 instances where kW is greater than 1000 

In this case, if you planned to apply an Interval that is different from the history collection Interval you would 
need to have a history with the high limit value. Even if you do have a history with the high limit value, 
comparing the rolled up (sum) power values versus the rolled up (sum) high limit values may not produce the 
same or expected result as processing individual history records. 

Parent topic: Algorithms, alerts and alarms 

COV histories 

COV (Change of Value) histories are often used in place of interval histories (records created at a fixed interval 
regardless of value change) for control points where the value does not change frequently. Using COV histories 
may consume less memory for storage. The records COV histories create indicate when the value of the control 
point changed, whereas, interval histories provide consistent record counts at the configured intervals, which 
makes analysis simpler at the expense of, perhaps, not knowing exactly when the value changed within the 
interval. 

Legal Notice

65



The framework handles COV history records in a special way. 

Figure 1. The AnalyticService’s NEQL test for COV identity 

The Test Cov Neql property on the AnalyticService determines if a history contains COV (irregular interval) 
histories. This property, which defaults to hs:hisInterpolate=’cov’, relies on the hs:hisInterpolate tag 
from the Haystack tag dictionary being applied to COV histories in the history database. 

The Haystack tag dictionary is a smart tag dictionary with a tag rule that applies the hs:hisInterpolate tag as 
an implied tag to any control point with a history extension. If the history extension is a COV history (records at 
irregular intervals), the hs:hisInterpolate tag value is cov and if the history extension is an interval history 
(records at regular intervals), the hs:hisInterpolate tag value is linear. 

The tag rule does not automatically apply the hs:hisInterpolate tag to COV histories in the station’s database, 
which are imported, such as Niagara history imports or BACnet history imports. You must manually apply this tag 
as a direct tag with the cov tag value. This is similar to the process of applying a direct n:history tag to 
histories imported using a BACnet history import. 

Consider a Boolean point named Occupancy with a COV history extension, where the value is controlled by a 
schedule that is active from 8:00 AM – 4:00 PM Monday through Friday. The Occupancy point has the a:a and 
hs:occupied marker tags applied. 

Figure 2. Bound table with missing hs:hisInterpolate=’cov’ tag 

A bound table with an Analytic Table Binding may be used to display the records from yesterday. Even though 
the binding’s Interval property is configured to create a record every Fifteen Minutes, the framework returns 

Legal Notice

66



only two expected COV records: one for 8:00 AM and the other for 4:00 PM. The framework returns only the 
actual COV records because the control point does not have the hs:hisInterpolate=’cov’ tag applied. 

If the hs:hisInterpoalte=’cov’ tag is applied to the Occupancy control point, the same bound table displays 
a record for every 15 minutes by filling in the missing intervals with the best known value. 

Figure 3. Bound table with hs:hisInterpolate=’cov’ tag applied reporting from yesterday 

The framework uses the hs:hisInterpolate=’cov’ tag to automatically fill in missing records from yesterday 
for the requested interval where the requested time range has a COV record available. The framework does not 
fill in future records, such as a time range of today where the last record in the history is 8:00 AM and the 
current time is after 8:00 AM. 

Figure 4. Bound table with hs:hisInterpolate=’cov’ tag applied reporting for today 

In this example it is necessary to enable the Missing Data Strategy to use an Interpolation Algorithm, such as K 
Nearest Neighbour. 

Figure 5. Missing data strategy configuration 

The missing data strategy fills in the missing records at the requested interval based on the Interpolation 
Algorithm. The trend flags for the interpolated records provide a text indicator, such as {Knn}, which indicates 
that the framework used the K-nearest-neighbour interpolation algorithm to display the data. 

Figure 6. Bound table with hs:hisInterpolate=’cov’ tag applied using K Nearest Neighbour 

Legal Notice

67



xNAFBoolea 

• COV configuration in a remote station 
To identify the history as a COV, the associated point in the remote station must have an added COV 
tag. 

• Algorithm Min and Max Intervals 
It is easy to think of the algorithm object as a container for “the algorithm.” But, it has its own set of 
properties to configure. One of those important properties is Interval. 

• Algorithm Makes Trends property 
The Make Trends property determines if an algorithm generates a constant value or a trend. These 
blocks have a Make Trends property: Interval Count, Value Duration and the four constant blocks, 
Boolean, Enum, Numeric and String. All default to false, which configures each block to return a 
constant value. 

Parent topic: Algorithms, alerts and alarms 

COV configuration in a remote station 

To identify the history as a COV, the associated point in the remote station must have an added COV tag. 

Figure 1. Point with COV tag 

The example screen capture above shows a Boolean point with a COV tag (highlighted). 

Consider the following analytic request and result for history data that does not include a COV tag. 

Figure 2. History not identified as COV 

Legal Notice

68



Notice that this example uses an analytic trend ORD scheme (1) to identify the trend data (2). Analytic trend, 
analytic value, and analytic rollup are three different ORD schemes particular to the framework. It is important 
to understand how to use these ORD schemes, as they are the foundation of all framework functionality. 

The ORD itself is: 

analytictrend:data=n:history&interval=fifteenMinutes&rollup=first&timeRange=lastMonth 

For clarity, it is asking for data identified by the n:history tag, using: 

• an interval of fifteen minutes 

• a rollup value of first 

• and a time range of last month 

Based on the n:history tag, the output (2) shows that for all of last month, the point went true, first thing 
Tuesday morning, at midnight, and it went false at the very end of the same day. No data were collected on 
any other day, since the value did not change. The ORD requests an interval of 15 minutes but instead of one 
row every 15 minutes, the request returns the same table that is visible on the COV history. This is because the 
framework is not aware that the history type for this point is COV. 

To resolve this issue, add a tag that identifies the history type as COV. The framework applies the NEQL query 
defined by the Test Cov Neql property and returns true for the point—the point’s history type is COV. 

Figure 3. History identified as COV 

Now that the history is identified as COV, we get a 15 minute rollup (highlighted), showing the correct value for 
the timestamp. 

All Analytic charts, tables, points, and alerts use ORD schemes. So, when something, for example, an alert that 
uses an algorithm, is not working the way you expect it to work, try the same algorithm using the same ORD 

Legal Notice

69



scheme that the alert uses. This lets you see the data the alert is actually receiving as input. 

Alternatively, you can use some other tag, and modify the NEQL query. You do not have to use Haystack tags for 
this. 

Figure 4. Alternate Test Cov Neql property 

Parent topic: COV histories 

Algorithm Min and Max Intervals 

It is easy to think of the algorithm object as a container for “the algorithm.” But, it has its own set of properties 
to configure. One of those important properties is Interval. 

Consider a simple algorithm that consists of a Data Source Block, a tag name on the Data slot, and a connection 
to the result block. 

Figure 1. Algorithm illustrating interval properties 

Tip: For debugging, it is best to use pass-through algorithms and Analytic ORD schemes to help you visualize the 
data that the algorithm is processing. Debug blocks do not provide the same insight, especially if you are just 

Legal Notice

70



starting out with Niagara Analytics. 

On the left side of the illustration above, the passthrough1 algorithm's Min Interval property is set to Ten 
Minutes. The right side of the illustration above shows a table with the results of resolving this ORD: 

analytictrend:data=alg:passthrough1&interval=none&timeRange=lastMonth 

The ORD is an analytic trend request processing the algorithm with an interval of none (special handling, which 
essentially means show every record) and a time range of last month. Even though the interval equals none, the 
resulting Collection Table shows one row every 10 minutes. This is because the Min Interval property on the 
algorithm object is set to Ten Minutes. This property is on the algorithm, not on any object that you see on the 
Wire Sheet. 

If you were to specify a Max Interval of Hour on the algorithm property sheet, and then specify an interval of 
Day in the Analytic Trend ORD, you would see a similar result. The Max Interval value on the algorithm would 
override what you specified on the ORD, and you would ultimately end up with a one hour rollup. 

In summary, when you see an unexpected rollup interval, check to see that no one has set a Max Interval, or a 
Min Interval on the algorithm property sheet. 

Parent topic: COV histories 

Algorithm Makes Trends property 

The Make Trends property determines if an algorithm generates a constant value or a trend. These blocks have a 
Make Trends property: Interval Count, Value Duration and the four constant blocks, Boolean, Enum, Numeric 
and String. All default to false, which configures each block to return a constant value. 

Figure 1. Algorithm illustrating Makes Trends property 

When a Makes Trends property is false on the algorithm Property Sheet, the framework does not process any 
trend requests. A value of true allows the framework to process both value and trend requests using the 
algorithm. 

Tip: 

Since analytic requests can be configured as either value or trend requests when the Makes Trends property is 
set to true, if a trend request (chart or table) result is empty (no data displayed), verify that Makes Trends is not 
set to false on the algorithm Property Sheet. 

Legal Notice

71



Some algorithm blocks, like a Numeric Constant, do not map to a history in the station’s database. These blocks 
may provide a value when the algorithm processes a trend request, but the block does not actually output a 
trend to pass to downstream linked blocks. If you link this type of block’s output to the input of a downstream 
block that requires a trend, you must set the Makes Trends property true. 

Parent topic: COV histories 

Best practices 

The framework provides powerful tools for managing large and small buildings with increasingly sophisticated 
control features. 

Running in a remote controller 

When running the framework in a remote controller, such as the JACE-8000, configure your PX graphics bindings 
and number of points carefully. While a remote controller can handle hundreds of points and multiple PX 
bindings, memory has its limits. During a heavy processing period, the system may slow and report server 
session time out errors. 

Refreshing cache memory 

The framework requires memory based on the number of hierarchies, tags and points you configure for real-
time and trend analysis. As you create hierarchies, tag points, build algorithms, and create alerts you should 
refresh cache memory frequently. To do so, right-click Config > Services > AnalyticService and click Actions >
Refresh Cache. 

Once your framework data model is configured and stable, you refresh cache only after changing the 
configuration in some way. On a system with hundreds of points and complex algorithms, a refresh can take a 
substantial amount of time. Plan any framework changes so that your station will have time to refresh cache. 

Invoking the Stop Caching action interrupts a refresh. You could use this action if a Refresh Cache action is taking 
a very long time. 

Algorithms 

As you expand the framework’s potential, keep these algorithm best practices in mind: 

• Define data sources carefully. When you refresh cache, the system scans every node in the hierarchy to 
determine where to run algorithms. The data sources, as well as some configuration properties, 
determine which nodes to run against. 

• Once an algorithm has executed, set up a poll timer/poll queue to run it again at a specified time. 

• While it is physically possible to nest an algorithm inside of another algorithm, the preferred method is 
to configure the Data property of the DataSourceBlock using the alg:otherAlgorithmName syntax. 

• To make an algorithm Wire Sheet that is particularly complex with lots of blocks and links easier to 
build and understand, you should organize your logic in Logic Folder blocks. 

• Interval alignment 
If an algorithm block supports multiple trend inputs, such as BiSwitch, LogicFilter, Psychrometric, 
DeadbandFilter, etc., the block evaluates the trend inputs and synchronizes the intervals to match the 
largest interval. In addition, it aligns the timestamps. 

• Debug block 
To provide debug information for value and trend requests, you link this block in line between other 

Legal Notice

72



blocks in an algorithm. 
• Frequently-asked algorithm questions 

Algorithms customize data analysis. These may be some of the questions you are asking about them. 

Parent topic: Algorithms, alerts and alarms 

Interval alignment 

If an algorithm block supports multiple trend inputs, such as BiSwitch, LogicFilter, Psychrometric, DeadbandFilter, 
etc., the block evaluates the trend inputs and synchronizes the intervals to match the largest interval. In 
addition, it aligns the timestamps. 

Consider an algorithm, like the one below, where a RequestOverrides block changes the interval of the request 
from Day to 15 Minutes for the logic branch connecting through the TimeFilter to In1 on the BiMath block. 

Figure 1. Interval alignment example 

In this example, the trend input to In1 on the BiMath block includes 15-minute interval records during the time 
range 12 pm (noon) to 12 midnight but the logic branch connecting the DataSourceBlock directly to In2 on the 
BiMath block includes daily interval records. 

The BiMath block needs to divide the records from the TimeFilter block (15-minute interval records) by the 
records from the DataSourceBlock (Daily-interval records). To do so, it must synchronize the intervals, otherwise 
the result will be meaningless. To apply the synchronization, the BiMath block changes the TimeFilter block 
output to Interval = Daily and applies the rollup function specified in the trend request. This aligns both the 
intervals and the timestamps to allow the BiMath block to perform the math calculation. The result from the 
output of the BiMath block contains daily records even though the TimeFilter block provided 15-minute interval 
records. 

A Px view with a Bound Table and Analytic Table Binding calls the algorithm with a 

Timerange of thisYear 

Interval of Week 

Rollup of Sum, which displays the percentage of total widget production during first shift. 

Figure 2. Analytic Table Binding using the interval alignment example 

Parent topic: Best practices 

Legal Notice

73



Debug block 

To provide debug information for value and trend requests, you link this block in line between other blocks in an 
algorithm. 

Figure 1. Example of a Debug block in an algorithm 

When the Enabled property is false the Debug Block just passes any value or trend request through to any 
downstream linked blocks. When its Enabled property is true the Debug Mode property controls which requests 
are processed to update the block’s Result property. 

The following table documents how the Debug Mode property arrives at a Result. 

Table 1. Debug mode results 

Debug Mode Description 

All Requests If Enabled is true, updates Result for every request. 

All Trend Requests If Enabled is true, updates Result with trend requests only. 

All Value Requests If Enabled is true, updates Result with value requests only. 

Next Request If Enabled is true, updates Result for the next request, then sets Enabled to false. 

Next Trend Request If Enabled is true, updates Result for the next trend request, then sets Enabled to false. 

Next Value Request If Enabled is true, updates Result for the next value request, then sets Enabled to false. 

To help explain the algorithm results, the Debug Block updates the Result property with details that include: 
whether it was a trend or value request and what its configuration values were, such as time range, interval, 
missing data strategy, rollup function, aggregate function, etc. when it processes a request. The text below is an 
example of a Result property for a value request. 

Value Request: 11–Oct-22 12:10:06 PM EDT 
  aggregation = first 
  data = alg:HighPowerBoolean 
  dow = 7f 
  interval = fifteenMinutes 
  mdStrategy = Ignore Series;None 
  node = local:|station:|slot:/AnalyticPlayground/HighPowerBoolean 
  rollup = first 
  seriesName = 
  statusFilter = {ok} 

Legal Notice

74



  timeRange = today 
  timeZone = America/New_York 
  user = admin 
  [Result] 11-Oct-22 12:10 PM EDT 952.8933040641983 {ok} 

Even though this is a value request, as indicated by the first line of the result, the analytic request context 
contains default values for properties that were not explicitly set in the request, such as timeRange = today, 
interval = fifteenMinutes, rollup = first and aggregation = first. 

Some analytic blocks are designed to modify the incoming request properties. This might affect the Result 
property of an upstream Debug Block. Consider the algorithm below with a Debug Block linked between a 
DataSourceBlock and a Request Overrides Block. The Request Overrides Block is configured to override the 
Interval = Day and Rollup = Max in the upstream analytic request. 

Figure 2. Example of a Debug Block in a sequence that overrides upstream property settings 

A Px view with an Analytic Table Binding sends a trend request without specifying the Interval or Rollup function. 

Figure 3. Table binding for a trend request 

The trend request time range is lastWeek so the unconfigured default interval should have been 6 hours and the 
unconfigured default rollup function is first. The Debug Block’s Result property shows the interval = day and 
rollup = max because the downstream Request Overrides Block is overriding those properties in the incoming 
request. 

Trend Request: 11–Oct-22 4:40:56 PM EDT 
  aggregation = first 
  data = alg:RequestOverride 
  dow = 7f 
  interval = day 
  mdStrategy = Ignore Series;None 
  node = local:|station:|slot:/AnalyticPlayground/RequestOverride 
  rollup = max 
  seriesName = 
  statusFilter = {ok} 

Legal Notice

75



  timeRange = lastWeek 
  timeZone = America/New_York 
  user = admin 

Parent topic: Best practices 

Frequently-asked algorithm questions 

Algorithms customize data analysis. These may be some of the questions you are asking about them. 

How do the alert Time Range and Interval properties affect the calculation of an algorithm? 

The Time Range defines the history records to process. The Interval works in conjunction with the Rollup 
property to configure whether all individual records should be processed or the data should be rolled up into 
fewer records, which are then processed. 

For example, if Time Range is yesterday and Interval is 15 minutes, the algorithm processes each of the 96 
records. If Time Range is yesterday and Interval is one hour, the query applies the rollup function to the records 
causing the algorithm to process each of 24 records. 

How do I set up an algorithm and alert with data sources that use a mix of COV and Interval history 
extensions? 

Make sure the data are tagged to identify the history as a COV. Then you could implement a Data Definition with 
a missing data strategy to interpolate missing records using the K nearest neighbor. When there is no COV record 
matching the interval history record, the analytic engine uses the last COV record prior to the timestamp. 

How do I get an alert to return to normal once the alert condition has cleared? 

If the alert is assigned to a cyclic poller, the next time it executes and does not detect the fault condition it 
should return to normal. 

What are the default settings on the alert property sheet slots for Time Range, Aggregation, Interval, Rollup, 
and Totalize? 

• Time Range defaults to Today. 

• If Aggregation is not enabled in the binding/settings window, the Data Definition defines its value for all 
chart bindings, reports and tables, returning the logical “and” for Boolean values. You configure 
Aggregation using a check box (if optional) or a drop-down list. 

For information about all the places where you can configure the aggregation function, refer to 
Aggregation configuration 

• When a request does not specify the default Interval, the system calculates one based on the time 
range: 

If the time range is >= one year, the interval is one month. 

If the time range is >= one month, the interval is one day. 

If the time range is >= one week, the interval is six hours. 

If the time range is >= one day, the interval is fifteen minutes. 

Legal Notice

76



If the time range is >= twelve hours, the interval is five minutes. 

If none of the conditions above match, the interval is one minute. 

• You configure Rollup using a check box (if optional) or a drop-down list. As a drop-down list, Rollup 
provides these options: 

If rollup is not enabled in the binding/settings window, the rollup value configured in the Data 
Definition applies to all chart bindings, reports and tables. 

And returns the logical “and” of Boolean values. 

Avg returns the statistical mean, which is determined by calculating the sum of all values and dividing 
by the number of values. 

Count returns the total number or quantity of values in a combination. If you request this value on a 
binding in a PX view, the system counts the number of values based on the properties defined by the 
data source block and the algorithm’s Property Sheet. 

First returns the first value in the combination. 

Last returns the last value in the combination. 

Max returns the highest value in the combination. 

Median returns the value in the middle of a sorted combination—the number that separates the higher 
half from the lower half. 

Min returns the lowest value in the combination. 

Mode returns the statistically most frequently occurring number in the combination. 

Or returns the logical “or” of Boolean values. 

Range returns the statistical difference between the largest and smallest values in the combination. 

Sum adds together all values in the combination resulting in a single value. 

Std Dev calculates the standard deviation of the values in the combination. 

Load Factor calculates the average divided by peak (Max) value. 

For information about all the places where you can configure the rollup function, refer to Rollup 
configuration 

• Totalize is a Boolean property or an ORD scheme parameter. It: 

Turns on (true) and off (false) value accumulation. 

By default, the framework totalizes (accumulates) all consumption history values in charts, tables and 
reports. To prevent cumulative values, disable this property (set it to false). 

What specifically does the Totalize property do? 

It tells the analytic engine whether to calculate a delta value or to totalize values. This applies to trend requests 
where the underlying data might be totalized or delta logged. 

Legal Notice

77



Haystack defines the hisTotalized tag as indicating values, which are a continuous stream of totalization. 
History data read and should be normalized by computing the delta. 

You may need to experiment with the Totalize property to fully understand how it functions. But clearly it has to 
do with consumption values, like KWH, or gallons, and how they are logged. It is beneficial to log gallons 
consumed since the last record, rather than gallons since the meter was installed, because otherwise, there is a 
risk of “rolling over the odometer.” Totalization adds up the values, so that you see how much you have 
consumed over a period of time, rather than calculating a rate of consumption, which is technically what you are 
logging in an ideal scenario. 

How do I accommodate trends with offset time stamps. How does that affect an algorithms operation? 

One way to do this is to apply an interval and rollup function to align records with the smallest timestamp 
possible. 

Another option is to implement a missing data strategy and enable interpolation with the K nearest neighbor. 

There is also a timestamp offset block, which you can use in an algorithm if you actually need to compare data 
from one timestamp to data from another history with an offset timestamp. 

Parent topic: Best practices 

Legal Notice

78



Data visualization 

Charts take large volumes of detailed data and make them usable to detect patterns and solve problems. A set of 
pre-defined charts can work together to accomplish these goals. You can also create your own charts. 

• Rollup and aggregation 
Rollup and aggregation are features the framework uses to combine data for meaningful analysis. A 
rollup combines multiple adjacent rows of historical data into a single row. Aggregation applies to any 
request for individual data by tag, such as hs:power or an algorithm where multiple data sources are 
found and processed. Trend requests may find multiple data sources, each with histories and the 
aggregation function combines those historical values as well. Rollups and aggregation control how an 
algorithm queries the database for input data. 

• Changing rendering limitations 
The number of records included in a chart or report relates directly to system speed and performance. 
By default, the framework limits this number. The default values for each chart and report were set 
based upon extensive testing in the laboratory. The configuration of these values is hidden so that they 
cannot be changed unintentionally. 

• Automatic conversion of values in tables 
When the system converts one unit it automatically shortens the unit’s value and adds a suffix. This 
improves the readability of large data and data with multiple decimal places in report tables. 

• Historical comparisons using baselineValue 
The baselineValue feature compares the two historical values of a single point. The existing Analytic 
Web Chart and Analytic Web Table are updated and designed in HTML5 to visualize the baselineValue 
and historical data in the browser. 

• Configuring a baselineValue in charts and tables 
This procedure explains configuring baselineValue in the AnalyticWebChart, AverageProfileChart, and 
LoadDurationChart. You can also use a Web table to compare individual values of historical data. 

• Pre-defined charts 
The pre-defined charts work both in Workbench and a browser. 

• Reports 
The Report view provides an HTML page where end users can create ad-hoc reports and access saved 
reports. The available reports have names that correspond to the specialized Analytic charts including 
Aggregation, Average Profile, Equipment Operation, Load Duration, Ranking and Spectrum. Each report 
leverages the applicable specialized chart and also displays the historical data in a table below the 
chart. The reports also provide additional functionality allowing end users to configure the nodes, data, 
time range and many other properties. 

Rollup and aggregation 

Rollup and aggregation are features the framework uses to combine data for meaningful analysis. A rollup 
combines multiple adjacent rows of historical data into a single row. Aggregation applies to any request for 
individual data by tag, such as hs:power or an algorithm where multiple data sources are found and processed. 
Trend requests may find multiple data sources, each with histories and the aggregation function combines those 
historical values as well. Rollups and aggregation control how an algorithm queries the database for input data. 

Both features share the same set of functions 

A rollup uses a function (sum, average, etc.) to combine historical data. It allows you to view dissimilar histories 
at common intervals. For example, if one point samples data at five-minute intervals, and another samples at 
10-minute intervals, you can use rollup to calculate and compare their values at, 10-minute intervals. 

An aggregation uses a function (sum, average, etc.) to combine multiple data source values into a single value. If 
not explicitly configured, the framework uses the first function for both rollup and aggregation. 

The framework tends to convert primitive data types in the background if necessary. For example, using an And 

Legal Notice

79



function for aggregation of numeric points returns a false (0) if any numeric value is <=0. The And, Or functions 
work on numeric and enum (ordinal) values. The Math functions also work on Boolean values using 0 for false 
and 1 for true. 

Function Description 

And Logical and. 

Avg Calculates the sum divided by the count. 

Count Returns the number of values. 

First Returns the initial value in the set. 

Last Returns the final value in the set. 

Load Factor Returns the average value divided by peak (Max) value. 

Max For numerics, this is the greatest value. For Booleans, false = 0 and true = 1. For enums, this returns the greatest 
ordinal. 

Median Returns the value in the middle of a sorted combination—the number that separates the higher half from the 
lower half. 

Mean Returns the arithmetic mean (average) of the values in the data source(s). 

Min For numerics, this is the smallest value. For Booleans, false = 0 and true = 1. For enums, this returns the smallest 
ordinal. 

Mode Returns the statistically most frequently occurring number in the combination. 

Or Logical or. 

Std Dev Returns the standard deviation of the values in the combination. 

Sum Adds all values together. 

When the difference between two values matters 

Some of the functions used by aggregation and rollup may not make sense for certain values. For example, the 
sum of KWh for a group of points yields the total energy consumed; however, the average of those same points 
yields a meaningless number. In another example, summing air temperature readings may not yield a useful 
number. You may be more interested in the delta (change) that occurs between the historical values. To have the 
system calculate this value, make sure data source is tagged with the hs:hisTotalized marker tag and the 
request totalize property is false. 

Best practice 

As you configure the visualization of values and trends, experiment with the rollup and aggregation properties 
on the binding. If you get a result you do not expect, consider the settings for these properties. 

Parent topic: Data visualization 

Changing rendering limitations 

The number of records included in a chart or report relates directly to system speed and performance. By 
default, the framework limits this number. The default values for each chart and report were set based upon 
extensive testing in the laboratory. The configuration of these values is hidden so that they cannot be changed 

Legal Notice

80



unintentionally. 

You understand the impact on framework performance of increasing the number of records rendered on charts 
and reports. You are working in Workbench. 

CAUTION: Increasing the number of records rendered can slow system performance to an unacceptable level. 

1. Expand Config > Serivces, click the AnalyticService, and select AX Slot Sheet from the drop-down list in 
the upper right corner of the view. 
The slot sheet opens. 

2. Right-click the chartRenderCapacity property, select Config Flags from the menu, click to deselect the 
Hidden check box, and click OK. 

3. Select AX Property Sheet from the drop-down list in the upper right corner of the view, modify the 
chartRenderCapacity value as desired and save. 

Parent topic: Data visualization 

Automatic conversion of values in tables 

When the system converts one unit it automatically shortens the unit’s value and adds a suffix. This improves the 
readability of large data and data with multiple decimal places in report tables. 

This automatic rescaling of values applies to all large or small values regardless of whether they have Metric or 
English Standard facets applied. 

For example, a value of 16100 converts in the table as 16.10k. 

Figure 1. A table with converted values 

Number conversion 

These abbreviations are for values that are greater than 1,000. 

Legal Notice

81



Suffix symbol Name Positive orders of 10 

T trillion 1,000,000,000,000 

G billion 1,000,000,000 

M million 1,000,000 

k thousand 1,000 

Decimal number conversion 

These abbreviations are for values that are less than 1. 

Suffix symbol Name Negative orders of 10 

m thousandth 0.0001 

µ millionth 0.000 001 

n billionth 0.000 000 0001 

p trillionth 0.000 000 000 001 

Parent topic: Data visualization 

Historical comparisons using baselineValue 

The baselineValue feature compares the two historical values of a single point. The existing Analytic Web Chart 
and Analytic Web Table are updated and designed in HTML5 to visualize the baselineValue and historical data in 
the browser. 

The procedure for configuring the baselineValue feature in charts and Web Tables is an additional option for 
predefined analytics charts and analytics web tables. You can configure the baselineValue feature in the 
Workbench and browser. Based on the Time Range selected in the chart, the baselineValue time range is 
adjusted automatically to the baselineValue time range type. 

These charts and table support the baselineValue feature: 

• Analytic Web chart: the multipurpose chart generates line, bar, and area charts. In addition, now you 
can enable the baselineValue option and compare the historical data of each point. 

• Analytic Average Profile Chart: the chart represents an average of a data value over a period; with the 
baselineValue feature, you can compare averages for two different periods. 

• Analytic Load duration Chart: the chart monitors the duration of peak demand. Comparing peak 
demand for two periods is now possible with the baselineValue feature. 

• Web Table 

: you can enable the baselineValue option and compare the historical data of each point in the web 
table. 

Parent topic: Data visualization 

Legal Notice

82



Configuring a baselineValue in charts and tables 

This procedure explains configuring baselineValue in the AnalyticWebChart, AverageProfileChart, and 
LoadDurationChart. You can also use a Web table to compare individual values of historical data. 

You are working in Workbench connected to a station whose database contains a substantial amount of 
historical data. 

This procedure explains configuring the baselineValue feature by using the example of a chart. Similarly, you can 
compare the values using a Web table. 

1. Navigate to the logic folder in the view pane, and right-click logic Views > New View. 
The New Px View opens 

2. Select the properties and click OK. 
The Px editor Opens. 

3. To change the view size property, right-click the background canvas, and select Edit Properties. 
The default canvas size is 1000 by 800 pixels. You may find this size too big for a chart that compares a 
baseline value with another value. 
The Canvas Pane properties window opens. 

Legal Notice

83



4. To decrease the viewSize in pixels, click 
The viewSize window opens. 

Change the pixel size to 640 x 480 pixels. 
5. Open the analytics palette. 

The analytics palette opens in the sidebar. 

6. Expand the Charts folder and drag an AnalyticsWebChart, AverageProfileChart, or LoadDurationChart 
to the Px canvas pane. 
The Web Widget Properties window opens. 

Legal Notice

84



7. Configure the following properties and Click OK. 

• Node selects the ORD for the desired slot. 

• Data specifies the tag used to retrieve data. 

• baselineValue enables the baselineValue feature. 

The chart with comparing two historical values opens. 

8. Select the time range form the right corner drop-down to visualize the different patterns of historical 
data. 
You can observe the chart in browser view also. You can add multiple points and observe different 
patterns for all the points. 

Legal Notice

85



9. To export the chart click . 
The Export Wizard window opens. 

10. Configure the properties and click OK. 

• File Name provides the file name for the resulting file per your choice. 

• Destination selects the destination of the file to save. 

• File Type selects the awchart as file type from the drop-down list. 

You can view the exported chart in Workbench or a browser. 

Parent topic: Data visualization 

Pre-defined charts 

The pre-defined charts work both in Workbench and a browser. 

Here are some needs a Facility Manager, Data Center Manager, or Utility Manager may have and which chart to 
use to meet each need: 

The Need (what you might want to do) The Recommended Chart to use 

• Combine data from separate nodes into single figures. 

• View spikes in power usage at a point in time. 

AggregationChart combines values across a selected time range 
showing the average for each value. For example, if you select 
This Week, the chart reports the average for each day of the 
week. 

• View power spikes grouped by day. 
AverageProfileChart plots a graph that shows the average of each 
value for all bindings grouped by time. 

Legal Notice

86



The Need (what you might want to do) The Recommended Chart to use 

• Evaluate the average monthly temperature in a storage 
area for a period of a year. 

View equipment status (when was the power on and when was it 
off?) 

EquipmentOperationChart shows when a piece of equipment is 
powered on and off. providing insight into equipment operating 
patterns. 

• Compare the same value across multiple locations. 

• Determine the energy required when adding additional 
equipment. 

RankingChart uses vertical bars to compare binding values from 
lowest to highest (left to right). 

Determine for how long a value was at a specific level (high/low), 
such as to view the number of hours that a generator generated 
specific kilowatts of power per hour. 

LoadDurationChart plots load versus duration. 

• Drill down to the specific time when something 
occurred. 

• Observe temperature or pressure over a period of 
time. 

SpectrumChart uses pattern recognition techniques and color 
coding to illustrate multiple aggregated values obtained from the 
same data source. The colors on the chart quickly identify trouble 
spots for further investigation. 

Details about each chart and a screen capture of each are in the Niagara Analytics Reference 

• Configuring a pre-defined chart 
The pre-defined charts work both in Workbench Px Views and as well as in a browser (Web Charts). This 
topic provides basic instructions using framework examples. 

• Creating a new Px view 
In core Niagara, a widget (label or chart) is associated with a data source (object) using a binding. This 
binding defines an ORD property that identifies the location of the object that updates and animates 
the widget. The framework replaces the ORD with a tag, which causes the binding to collect data from 
all points tagged with the same tag. You set up a Px View in Workbench to visualize framework data the 
same way you set up a regular Niagara Px View. This topic provides basic instructions using framework 
examples. 

• Creating a new Ux chart 
Ux (User Experience) charts are web charts. Programmed using HTML5, these charts are designed to 
work best when viewed in a browser. They also work as Px views and they use the standard Workbench 
PxEditor. 

• Observing patterns using the Spectrum chart 
This Ux chart provides a powerful tool that converts raw data into visual patterns, which you can use to 
identify subtle problems before they develop into major system issues. This chart works with historical 
data. The procedure for configuring this chart is similar to those for configuring the other charts. 

• Changing the aggregation function 
The default aggregation function displays the first value that the framework finds. 

• Setting up an analytic table binding 
Tables by their nature are historical. Setting up an analytic table binding assumes that the points you 
are using have histories with them. Using a bound table is a good way to troubleshoot problems with 
bound labels because in a table you see the historical data that the framework is processing. 

Parent topic: Data visualization 

Legal Notice

87



Configuring a pre-defined chart 

The pre-defined charts work both in Workbench Px Views and as well as in a browser (Web Charts). This topic 
provides basic instructions using framework examples. 

The analytics palette is open. 

1. Right-click your logic folder in the Nav tree and click Views > New View. 
The Px Editor opens. 

2. Select the background canvas, and change the viewSize property to 640 x 480 pixels. 
The minimum height for an Aggregation chart is 560 pixels. When set to 550 or less, the Time Range is 
not available for this chart. 

3. Scroll down to the bottom of the analytics palette, expand the Charts folder, and drag a chart to the Px 
Editor. 

4. Drag the chart to fill the canvas. 
The system populates the tabs to the right of the window, one of which is the Widget Tree. 

The screen capture is for a Ranking Chart. 

5. Double-click the widget. 
The Properties window for the chart opens. 

The properties related to the framework are in the AnalyticChartBinding or AnalyticWebChartBinding 
section of the window. 

6. For an Aggregation chart, confirm that Time Range is available. 
7. Configure at least the Data property by clicking the chooser button ( ) and selecting a data source tag 

from the drop-down list. 
The remaining properties default to current values. 

Parent topic: Pre-defined charts 

Legal Notice

88



Creating a new Px view 

In core Niagara, a widget (label or chart) is associated with a data source (object) using a binding. This binding 
defines an ORD property that identifies the location of the object that updates and animates the widget. The 
framework replaces the ORD with a tag, which causes the binding to collect data from all points tagged with the 
same tag. You set up a Px View in Workbench to visualize framework data the same way you set up a regular 
Niagara Px View. This topic provides basic instructions using framework examples. 

You are working in Workbench and are familiar with how to use the PxEditor. 

1. Right-click your equivalent of a Logic folder, click Views > New View, and assign a view name. 
The New Px View window opens. 

2. Assign a View Name and click OK. 
The Edit view of the PxEditor opens. 

3. Right-click the canvas pane and click New > Label (or duplicate a similar label you already created) and 
expand the size of the label. 
The system creates an unbound label and populates the Properties tab at the bottom right corner of 
the Px Editor view and opens the Properties window for the Label. 

4. Click the add binding button ( ) at the top of the window. 
The Add Binding window opens. 

5. To an unbound label, select one of the analytics: bindings and click OK. 
• The analytics:Analytic Rollup Binding combines (rolls up) multiple instances of a value into a 

single value. 
• The analytics:Analytic Value Binding reports the current, real-time value of the point. 

The system associates the binding with the label and displays the binding properties. 
6. Scroll down in the Properties window until you see the binding properties for the analytics: binding you 

selected. 

Legal Notice

89



The example shows the Analytic Rollup Binding properties. The first four properties: degradeBehavior, 
hyperlink, summary, and popupEnabled are familiar Workbench properties. The rest are unique to the 
framework. 

Any request (query) from the database requires you to configure at least the data source. The 
framework pulls data from one or more points with this tag. 

The other values are optional depending on the binding request. A value binding always deals with 
current values. The system ignores any setting of the rollup property for a value binding. An aggregation 
requires the starting node when aggregating multiple data sources. This node is usually a container that 
identifies a building or geographic location. 

7. Use the file finder button ( ) and component chooser to populate the data and node properties. 

Note: Unlike building a Px View in core Niagara, you do not select a point to establish an ORD. Your tag 
and node selections determine the point(s) to use. These properties take the place of a traditional ORD. 

8. Do one or both of the following: 
• If you are configuring a rollup value based on historical data, click the rollup property, enable 

Use This Value, select (from the drop-down list) the function (count, first, last, avg, etc.) to use 
to roll up the data and click OK. 

• If you are aggregating multiple data sources, click the aggregation property, enable Use This 
Value, select (from the drop-down list) the function (count, first, last, avg, etc.) to use to 
aggregate all values into a single resulting value, and click OK. 

Both rollup and aggregation default to their preferred settings in the data definition that is associated 
with each tag. 

9. If you started this procedure from an unbound label, scroll up in the Properties tab, right-click text and 
click Animate. 
The Animate window opens with the default format set to %.%. In coreNiagara you might configure 
this property to read %out.value%. The equivalent in the Niagara Analytics Framework is 
%value%. 

10. Change Format to %value% and click OK. 
The framework returns the value and not the point status. 

Tip: If the chart includes a large number of bindings, and some bindings yield small quantities of data (very near 
each other on the chart), the labels may overlap and become unreadable in a PDF. To fix this problem, increase 
the size of the chart to allow space for label placement without overlaps. 

Parent topic: Pre-defined charts 

Legal Notice

90



Creating a new Ux chart 

Ux (User Experience) charts are web charts. Programmed using HTML5, these charts are designed to work best 
when viewed in a browser. They also work as Px views and they use the standard Workbench PxEditor. 

You are working in Workbench and are familiar with how to use the PxEditor. 

1. Right-click your equivalent of a Logic folder and click Views > New View. 
The New Px View opens. 

2. Assign a View Name, choose Ux Media for Target Media and click OK. 
The Edit view of the PxEditor opens. 

3. Open the webChart palette, drag a Chart component to the wire sheet and position it for easy viewing. 
4. Click the add binding button ( ) next to WebWidget in the Properties pane. 

The Add Binding window opens. 

5. Select analyticsAnalytic Web Chart Binding and click OK. 
6. Double-click the chart component. 

The Properties window opens 

Legal Notice

91



. 
7. Configure the data property to display the desired information, such as hs:energy to show electrical 

energy values while leaving other properties set to their default values. 
The table displays all values plotted throughout the day (today is the default interval). 

8. To view the resulting chart, click the Toggle View/Edit Mode icon (
Workbench renders the chart as a Px graphic. 

9. To view how the chart looks in a browser, click the Toggle Browser Preview Mode icon ( ). 
Workbench renders the chart as it will look in a browser. 

10. Using the drop-down list at the top of the chart component, change the interval to Last Week, Last 
Month, etc. 
The data displayed in the chart change. 

11. To configure multiple plots on the same chart, edit the binding by changing the node to a component in 
the station that represents a building that has an electrical energy point with an hs:energy tag, add 
another Analytic Web Chart Binding to the Web Chart widget, configure its node for a component that 
represents a different building and edit its properties: data and timeRange to match the first binding. 
For example, you could plot values for two different networks or two different buildings on the same 
graph. This would work for comparing energy usage or possibly space temperature in a couple of 
different rooms. 

12. To save the configuration, click the Save icon ( ). 

When viewing the chart outside of the PxEditor, the Settings icon (*) at the top of the chart allows configuring 
the same properties that appear on the binding property sheet. Changing the properties with the Settings icon 
affects the live chart rendering but does not change the actual binding property values, which are saved in the px 
file. This allows an end user to dynamically change the data source, time range, rollup or aggregation functions, 
interval, etc. to analyze data as needed in the chart. 

Tip: You may embed Web Charts into a Dashboard Pane to allow end users to persistently save properties 
modified using the Settings icon. The framework saves the dashboard settings persistently for each user and 
those changes do not affect other users when viewing the same px. 

Parent topic: Pre-defined charts 

Observing patterns using the Spectrum chart 

This Ux chart provides a powerful tool that converts raw data into visual patterns, which you can use to identify 
subtle problems before they develop into major system issues. This chart works with historical data. The 
procedure for configuring this chart is similar to those for configuring the other charts. 

Legal Notice

92



The system has collected enough historical data to produce a meaningful chart. Workbench or your browser is 
open and connected to a station, most likely a Supervisor station. 

1. Open the analytics palette and expand the Charts folder. 
2. Open a new Px view. 
3. Drag the Spectrum Chart from the palette to the Px view. 
4. Double-click the chart or right-click the chart and click Edit Properties. 

You can change the values plotted by manipulating the chart’s wire sheet properties, or by right-clicking 
the chart and using the properties window. 
The Properties window for the chart opens. 

5. Configure properties and click OK. 

Note: For best results, configure this chart with at least a height of 480 Abs or greater. 

The framework renders the chart. 

This chart shows electrical demand values for an entire month where colored swatches indicate the 
actual values for a specific time and day during the month. In this case, there are 31 colored swatches 

Legal Notice

93



horizontally at each timestamp representing each of the 31 days. The vertical size of the colored 
swatches vary based on the Interval property, which in this case is 30 minutes so there are 48 vertical 
colored swatches for each day. Notice that between midnight and 1 am as well as from 18:00 to 19:00 
(6–7 p.m.), electrical demand was higher than expected for each Saturday and Sunday. This could be an 
anomaly or it could indicate a condition that requires further investigation. Such a spectrum chart 
allows an energy analyst to quickly spot a potential problem. 

6. To plot a pattern for another point, drag the point from the Nav tree to the chart. 

Parent topic: Pre-defined charts 

Changing the aggregation function 

The default aggregation function displays the first value that the framework finds. 

A Px view exists that uses aggregation to combine real-time values. 

1. Open an existing Px View. 
2. Double-click the chart widget. 

The Properties window opens. 
3. If necessary, scroll down in the window to the Analytic binding properties. 
4. Click the chooser button ( ) to the right of the aggregation row. 

The aggregation window opens. 

5. Enable Use This Value, choose a value other than First from the drop-down list, click OK, and click OK 
again to close the Properties window. 

Parent topic: Pre-defined charts 

Setting up an analytic table binding 

Tables by their nature are historical. Setting up an analytic table binding assumes that the points you are using 
have histories with them. Using a bound table is a good way to troubleshoot problems with bound labels 
because in a table you see the historical data that the framework is processing. 

The points you are using have history extensions. 

1. Open the bajaui palette, expand the Widgets folder and drag a BoundTable widget to the Wire Sheet. 
2. Double-click the widget, click the Px binding button ( ) select an analytics Table Binding, and click OK. 
3. Scroll down to the Analytic Table Binding section of the window and enter the tag for data that 

identifies the data source. 
4. Change any other properties and click OK. 

Legal Notice

94



You see the result of the change in the table. Rollup does not actually impact the results until the 
interval changes. 

Parent topic: Pre-defined charts 

Reports 

The Report view provides an HTML page where end users can create ad-hoc reports and access saved reports. 
The available reports have names that correspond to the specialized Analytic charts including Aggregation, 
Average Profile, Equipment Operation, Load Duration, Ranking and Spectrum. Each report leverages the 
applicable specialized chart and also displays the historical data in a table below the chart. The reports also 
provide additional functionality allowing end users to configure the nodes, data, time range and many other 
properties. 

To view each report click its thumbnail. 

Figure 1. All Reports thumbnails 

The framework intelligently selects the interval to use, if not explicitly set, for each report based on the optimal 
number of records for each report. You can change the interval by clicking the Advanced button in the report 
editor. 

• Creating Ux reports 
Ux (User Experience) reports use HTML technologies. They are designed to be managed using a 
standard browser client, to be human-friendly and easy to use. Where Px reports require a Workbench 
client to configure, Ux reports share a centralized HTML home page with large visual tiles and 
identifiable icons. From the single centralized view you can create, edit, delete and clone reports as well 
as search and sort report lists. Only reports created using this view are visible in this view. Px reports 
are not visible here. 

• Managing Ux reports 
Once a Ux report exists, you may edit its properties, clone it and delete it. 

• Creating a dashboard 
Each time a saved analytic report is accessed from the Report view, the report loads blank. The end 
user must configure the desired node, time range, data and other options. You can embed the Analytic 
Report widgets under a Dashboard Pane in a Px view, which causes the framework to save the report 
configuration. When an end user opens an Analytic Report in a Px dashboard, the Report loads with the 
last saved configuration. 

• Configuring a report or a dashboard 
Configuration involves selecting nodes, picking colors selecting the date range and other options. 

• Normalizing energy consumption values based on floor area 
An energy procurement strategy can reduce consumption volatility. It also sets up a load profile that is 
more attractive to energy providers and can reduce your energy costs. To create an energy procurement 
strategy you need to understand current energy consumption patterns exhibited by your equipment. 
Normalizing the floor area of a facility evens out the energy consumption or demand differences caused 
by large and small spaces. This results in more useful comparisons. This topic documents how to 
configure the framework’s Average Profile report to plot and report these patterns for a single piece of 
equipment. 

• Normalizing energy consumption values based on degree-day temperature 
Normalizing energy usage based on degree days allows more accurate comparisons for a building when 
analyzing data from different times of year, such as summer versus winter. Degree day normalization 

Legal Notice

95



may also facilitate more accurate comparisons when buildings are located in different geographic 
regions that experience different weather patterns. 

• Printing a report 
There are two ways to create a hard copy of a report: export the report to a PDF and print the PDF from 
your PC, or print the report from the web UI using either Chrome or Firefox. 

Parent topic: Data visualization 

Creating Ux reports 

Ux (User Experience) reports use HTML technologies. They are designed to be managed using a standard 
browser client, to be human-friendly and easy to use. Where Px reports require a Workbench client to configure, 
Ux reports share a centralized HTML home page with large visual tiles and identifiable icons. From the single 
centralized view you can create, edit, delete and clone reports as well as search and sort report lists. Only 
reports created using this view are visible in this view. Px reports are not visible here. 

You are working in Workbench or a browser client connected to the station. 

1. Right-click AnalyticService > Reports and click Views > Analytic Ux Report List View. 
The All Reports view opens. 

2. Click the New Report button. 
The Create from palette window opens. 

3. Give the report a name and description, select the type of report from the drop-down list, and select 
where to store the report file and click OK. 

Parent topic: Reports 

Managing Ux reports 

Once a Ux report exists, you may edit its properties, clone it and delete it. 

The report exists. 

1. Expand AnalyticService and double-click Reports. 
The Analytic Ux Report List View opens. 

2. Scroll to the report or search for the report by name. 
3. To edit the report, click the edit icon ( ). 

The Edit report window opens. 

Legal Notice

96



You can change the name and description. 

4. To make a new report by using an existing report (clone), find the report and click the clone icon ( ). 
The Clone report window opens. 

5. To continue cloning the report, enter a name, description, and location for the new report. 
6. To delete a report, locate it, click the delete icon ( ) and respond to the message with OK. 
7. To view the report, click on it. 

The report may take a few seconds to open. 

Parent topic: Reports 

Creating a dashboard 

Each time a saved analytic report is accessed from the Report view, the report loads blank. The end user must 
configure the desired node, time range, data and other options. You can embed the Analytic Report widgets 
under a Dashboard Pane in a Px view, which causes the framework to save the report configuration. When an 
end user opens an Analytic Report in a Px dashboard, the Report loads with the last saved configuration. 

The DashboardService exists in the station’s Services container and the dashboard palette is open. 

1. Make a folder in your station to contain dashboards. 
2. Do one of the following: 

• To create a new view, right-click the folder, click Views > New View, and assign a view name. 
• To edit an existing view, double-click the view name. 

The New Px View window opens. 

3. Fill in the View Name for the dashboard and click OK. 
4. Expand the Canvas Pane viewSize to 1024 x 768 (this property is in the Properties side pane). 

Legal Notice

97



5. Drag the Dashboard pane from the palette to the Widget Tree (side panel in the PxEditor view). 
6. Open the analytics palette, expand the reports node, and drag a report to the Dashboard Pane child 

content. 
The system adds the report to the Widget Tree panel. For example: 

7. Save the Px view. 

Parent topic: Reports 

Configuring a report or a dashboard 

Configuration involves selecting nodes, picking colors selecting the date range and other options. 

You are connected to the station and the report or dashboard to configure exists. 

1. Expand the Nav tree to locate the points to include in the report, then expand the report or dashboard 
folder in the station, and double-click the report or dashboard name. 

2. Drag a component (folder, device, point folder, etc.) or an individual point to analyze from the Nav tree 
to the Node pane. 
To group nodes in the Node pane, drop the node you are dragging onto the node parent group. To 
configure a parallel group for analysis, drop the node you are dragging outside the structure in the 
Node pane. 

Note: The Aggregation and Spectrum reports support only one group. 

The screen capture is an example of the Node pane with three groups. 
3. To change the color associated with the group, click the color swatch to the left of the group name and 

select the color in the Color Picker. 
4. To rename a group, right-click it, click Rename, enter a new name and click OK. 
5. Click the Tag Chooser and define the data type. 
6. Click the calendar chooser and select the day or date range. 

The Time Range window selects a general time period or allows you to define a specific time and date 

Legal Notice

98



to start and end data collection. 
7. Click to toggle the desired days of week. 

When the background of the day of week button is black, the day will be included in the displayed data. 
8. For reports that support displaying a baseline trend, select the check box under the Baseline heading. 

When this check box is deselected no baseline is displayed and the text beside the check box displays 
No baseline. When this check box is selected a baseline may be displayed and the text beside the 
check box displays the configured baseline time range. 

9. To edit the baseline details, click the binocular icon ( ). 
10. To enable either or both routines for reports that support normalization, select the check box for Floor 

Area or Degree Day. 
11. Click Run Report. 

The report updates to display data in the chart and table. 

The screen capture is an example of a Relative Contribution Report. 

12. Do one of the following: 
• To expand the view to see the chart only, click the expand icon ( ) in the upper right corner of 

the chart area. 
• To expand the view to see the table only, click the expand icon ( ) in the upper right corner of 

the table area. 
13. To return to the overall view, click the contract icon ( ). 
14. To apply the changes you make, click the Update Report button. 
15. To configure additional properties, click the Advanced button. 

The additional properties vary depending on the report. See the Reference for a description of each 
property. 

Typically, when a dashboard-able widget is placed under a dashboard pane, the widget adds a save 
button to allow end users to decide whether to persist any configuration changes they have made. 
When any of the analytic reports is placed under a dashboard pane the framework adds a reset button 
in the Report Editor section to the right of the advanced button. Instead of adding a save button to the 
Report Editor section, the report saves any configuration changes (nodes, time range, days of week, 
etc.) automatically. Clicking the reset button prompts the end user with a window indicating, “This will 
remove your dashboard data from the widget. Are you sure you want to proceed?” If they click the Yes 
button, the framework resets the report back to its default, unconfigured state. 

Parent topic: Reports 

Legal Notice

99



Normalizing energy consumption values based on floor area 

An energy procurement strategy can reduce consumption volatility. It also sets up a load profile that is more 
attractive to energy providers and can reduce your energy costs. To create an energy procurement strategy you 
need to understand current energy consumption patterns exhibited by your equipment. Normalizing the floor 
area of a facility evens out the energy consumption or demand differences caused by large and small spaces. 
This results in more useful comparisons. This topic documents how to configure the framework’s Average Profile 
report to plot and report these patterns for a single piece of equipment. 

You are working in Workbench with any tag dictionary in the TagDictionary service. You have historical energy 
consumption data collected for the piece of equipment in the station database. 

In this procedure’s example the facility uses Hiers meters to monitor equipment power usage. 

1. Right-click the equipment and select Edit Tags from the popup menu. 
The Edit Tags view opens. 

2. To configure AnalyticService properties, right-click the service in the Nav tree, click Property Sheet, and 
edit the Area Tag property with the area tag name. 
If you do not configure the Area Tag property in the AnalyticService, the framework defaults to 
hs:area. 

3. Select the applicable tag dictionary (Haystack for default configuration), select the applicable tag 
(hs:area for default configuration) and click Add Tag. 
The Direct Tags tab in the lower half of the window displays the hs:Area tag. 

4. Enter your facility’s area (square feet or square meters) and click Save. 
The area in the example is configured for 1152 square units. 

5. Expand the AnalyticService in the Nav tree and double-click the Reports node. 
The set of available Analytic Ux Report List View report tiles opens. 

6. Do one of the following: 
• To create a new report, click New Report; supply a Rep Name and Description; select Average 

Profile or Load Duration Report for Report Type, click OK; and click the report tile. 
• To edit an existing report, click its tile. 

The Report Editor opens. 

Legal Notice

100



7. Drag the desired node, in this case the Equipment folder under the HiersMeters, from the Nav tree to 
the Node section in the Report Editor pane. 

8. Configure the Reporting Period; click to enable Floor Area under Normalization, and click Run. 
The framework produces the report. 

If neither the direct tag on the equipment node nor one of its children has an area value configured, or 
if the value is zero (0), the framework performs no normalization even if Floor Area normalization is 
enabled in the Report Editor. 

Parent topic: Reports 

Normalizing energy consumption values based on degree-day temperature 

Normalizing energy usage based on degree days allows more accurate comparisons for a building when 
analyzing data from different times of year, such as summer versus winter. Degree day normalization may also 
facilitate more accurate comparisons when buildings are located in different geographic regions that experience 
different weather patterns. 

You are working in the web UI with the AnalyticService. Historical OAT (Outside Air Temperature) data are 
available in the station database and tagged with an identifiable OAT Tag. 

1. To view the Nav tree, click the Navigation Tree button ( ). 
2. Right-click the Config > Services > AnalyticService in the Nav tree and click Views > Property Sheet. 

The AnalyticService Property Sheet opens. 

3. In the Oat Tag property, enter the tag that identifies the OAT values in the database. 
4. Expand the AnalyticService in the Nav tree and double-click the Reports node. 

The set of available Analytic Ux Report List View report tiles opens. 
5. Do one of the following: 

• To create a new report, click New Report; supply a Rep Name and Description; select Average 
Profile for Report Type, click OK; and click the report tile. 

• To edit an existing report, click its tile. 

Legal Notice

101



The Report Editor opens. 

6. Drag a component from the Nav tree to the Node window in the Report Editor. 
The report loads blank (no node configured) so the report does not actually render data without 
configuring a node. 

7. Configure the Reporting Period, including the days of the week; under Normalization, click to enable 
Degree Day; and enter the outdoor temperature at which neither heat nor air conditioning is required 
to maintain a satisfactory indoor air temperature. 
This outside temperature value defaults to 65.00, which is a Fahrenheit temperature. 

8. If you are using this default temperature, select °F from the temperature scale drop-down list, 
otherwise, enter a Celsius or Kelvin temperature value and select °C (Celsius) or K (Kelvin) from the 
drop-down list. 

9. To select the type of temperature supplementation, select Heating or Cooling for Degree day type. 
10. To identify the point node in the Nav tree to provide the outside air temperature values, click the plus 

icon to the right of the Degree Day properties. 
The Degree day mapping window lists the Node groups configured in the report and allows mapping 
each group to a specific control point with the hs:outsideAirTempSensor tag. 

11. If necessary, edit the group and node, then click OK followed by clicking Run. 

For the Reporting Period you defined, the framework calculates the degree-day value by taking the average of 
the differences between the base outside air temperature (default: 65.00) and each actual outside air 
temperature value. Then it calculates the energy consumption per degree-day by dividing the energy 
consumption for each interval by the average degree-day value. 
Parent topic: Reports 

Printing a report 

There are two ways to create a hard copy of a report: export the report to a PDF and print the PDF from your PC, 
or print the report from the web UI using either Chrome or Firefox. 

Legal Notice

102



The report exists. You are working in the web UI. 

1. Do one of the following: 
• To prepare to print a report in Chrome, click Ctrl + P. 
• To prepare to print a report in Firefox, click Menu > Print. 

For Chrome, the print preview page opens with the Print properties in the left pane. 

For Firefox, the print options appear along the top of the page. 

2. Click the tiny arrow above the report editor to minimize it so that only the report itself prints. 
3. After configuring properties, click Print. 

Parent topic: Reports 

Legal Notice

103



Outlier handling 

Historical data collected from meters, sensors and other building automation devices can skew calculations if 
records are missing or contain invalid values. Data may contain unwanted or inaccurate values caused by a 
sudden electrical current surge, meter reset or device failure. Operations performed on incomplete data sets and 
on records that contain junk, outlier, or noise values inevitably produce inaccurate results. Beginning with a 
recent version of Niagara, you can select which history records to exclude from the data set based on record 
Status.. 

For example, the following table contains invalid data. 

Timestamp Value Status Description 

15/12/21 2:00 99999099 {ok} This is an extremely high value, which is invalid. 

15/12/21 3:00 10 {ok} This is a valid value. 

15/12/21 4:00 20 {ok} This is a valid value. 

15/12/21 5:00 NaN {ok} This value is invalid because it is not a number. 

Not a Number, expressed as NaN, is an actual numeric value similar to 
positive infinity expressed as +inf or negative infinity expressed as -inf. 

15/12/21 6:00 20 {fault} This value is valid, but the status of the device indicates a problem. 

15/12/21 7:00 20000 {ok} This invalid high value was caused by a sudden meter reset. 

15/12/21 8:00 20010 {ok} This is another invalid high value caused by a sudden meter reset. 

Based on device status, you can filter out the records that contain invalid data. This creates a data set with 
missing records. You then use a missing data strategy to interpolate the missing data. 

• Filtering data with the status filter 
This filter identifies records with invalid data. After removing the records, you can configure the 
framework to interpolate the missing data using a missing data strategy. Follow these steps before 
applying a missing data strategy. 

• Filtering data with the raw data filter 
The raw data filter removes numeric-value records based on configured low and high limits. Then, a 
missing-data strategy, such as linear interpolation, creates new values for the filtered records. Values 
that are too low or too high can skew analytic results making them unusable. Use of this filter removes 
the outliers so that future data analysis returns more realistic results. 

• Raw data filter example 
This filter prepares data for meaningful analysis. This example illustrates how the filter works and 
suggests what a meaningful dataset would look like. 

Filtering data with the status filter 

This filter identifies records with invalid data. After removing the records, you can configure the framework to 
interpolate the missing data using a missing data strategy. Follow these steps before applying a missing data 
strategy. 

You are using Workbench in a Supervisor or controller station. The database contains history records collected 
from tagged devices for which the data definition exists. 

1. Navigate to Config > Services > AnalyticService and double-click the data definition associated with the 

Legal Notice

104



tag and device. 
The edit view of the data definition opens. 

Outlier Status options default to disabled, fault, down, stale, and null. This means that if you make no 
changes, the framework removes from the data set history those records whose Status value is one of 
these. 

2. To filter (remove) records that have specific statuses, select one or more check boxes under Outlier. 
3. To retain records that the framework would otherwise remove, click to remove one or more check 

marks. 
4. To continue, click Save. 

If you check all boxes, the framework filters out all records except those with a status of {ok}, which is 
always enabled. If you check no box, the framework filters out no records based on Status. 
The framework removes all records with the selected Status values from the data set. 

For example, here is a set of historical data: 

Timestamp Data value Status 

12/15/21 11:00 25 {fault} 

12/15/21 12:00 25 {null} 

12/15/21 13:00 45 {ok} 

12/15/21 14:00 56 {overridden, alarm} 

If you select the fault and null check boxes for Outlier, only these records pass through: 

Timestamp Data value Status 

12/15/21 13:00 45 {ok} 

12/15/21 14:00 56 {overridden, alarm} 

You would now interpolate the missing data using linear interpolation or K nearest neighbor. Following 
interpolation, the data would look like this: 

Legal Notice

105



Timestamp Data value Status Trend Flags 

12/15/21 11:00 45 {ok} {li} 

12/15/21 12:00 45 {ok} {li} 

12/15/21 13:00 45 {ok} {} 

12/15/21 14:00 56 {overridden, alarm} {} 

If there is no preceding record, the linear interpolation uses the first available record. If there is a valid preceding 
and post record, linear interpolation calculates a value between to two values. If the 10:00 value was 30, the 
interpolated values would be 11:00 35 and 12:00 40. 

An algorithm can process these data directly to create a graph or other visual representation of the data. 

Parent topic: Outlier handling 

Filtering data with the raw data filter 

The raw data filter removes numeric-value records based on configured low and high limits. Then, a missing-data 
strategy, such as linear interpolation, creates new values for the filtered records. Values that are too low or too 
high can skew analytic results making them unusable. Use of this filter removes the outliers so that future data 
analysis returns more realistic results. 

Latest version of Niagara 

1. Expand Config > Services > AnalyticService and double-click Definitions. 
The Analytic Data Manager view opens. 

2. To add a definition, click the New button. 
The New window opens. 

The Raw Data Filter is located below the outlier property. 

3. Enter a name for the definition and configure all relevant properties. 
4. To edit the high and low limits, click to remove the null check marks, and enter appropriate values. 

A check mark in a null check box disables the related limit. Removing the null check mark enables the 
limit. 

Legal Notice

106



If you only set the high limit, the filter only discards records with values above the limit (exclusive). 

If you only set the low limit, the filter only discards records with values below the limit (exclusive). 

If you set both limits, the filter discards records with values above and below the defined limits 
(exclusive). 

You can also configure the Raw Data Filter limits using the Data Definition Property Sheet (double-click Config >
Services > AnalyticService > Definitions, right-click the definition, and click Views > Property Sheet). 
Parent topic: Outlier handling 

Raw data filter example 

This filter prepares data for meaningful analysis. This example illustrates how the filter works and suggests what 
a meaningful dataset would look like. 

Here is a raw dataset representing power readings taken hourly beginning at 11 am for 10 hours: 

Timestamp Value Status 

15/12/21 11:00 20 {} 

15/12/21 12:00 25 {} 

15/12/21 13:00 15 {} 

15/12/21 14:00 -20 {} 

15/12/21 15:00 85 {} 

15/12/21 16:00 130 {} 

15/12/21 17:00 60 {} 

15/12/21 18:00 150 {} 

15/12/21 19:00 -15 {} 

15/12/21 20:00 90 {} 

Values higher than 100 and lower than zero are outliers that will inaccurately skew the resulting analysis. A data 
definition is configured as follows: 

The raw data filter outputs these values: 

Legal Notice

107



Timestamp Value Status 

15/12/21 11:00 20 {} 

15/12/21 12:00 25 {} 

15/12/21 13:00 15 {} 

15/12/21 14:00 removed by the filter 

15/12/21 15:00 85 {} 

15/12/21 16:00 removed by the filter 

15/12/21 17:00 60 {} 

15/12/21 18:00 removed by the filter 

15/12/21 19:00 removed by the filter 

15/12/21 20:00 90 {} 

Using linear interpolation the resulting dataset looks like this: 

Timestamp Value Status Trend Flags 

15/12/21 11:00 20 {} {} 

15/12/21 12:00 25 {} {} 

15/12/21 13:00 15 {} {} 

15/12/21 14:00 50 {} {li} 

15/12/21 15:00 85 {} {} 

15/12/21 16:00 72.5 {} {li} 

15/12/21 17:00 60 {} {} 

15/12/21 18:00 70 {} {li} 

15/12/21 19:00 80 {} {li} 

15/12/21 20:00 90 {} {} 

Parent topic: Outlier handling 

Legal Notice

108



Missing data management 

In statistics, imputation is the process of replacing missing data with substituted values. Incomplete, incorrect, 
inaccurate and irrelevant data are replaced, modified, or deleted. This is also known as data cleansing or data 
cleaning. 

Where the data are missing in the series plays an important role in the calculations. Data may be missing at the 
beginning of the data set, interspersed among the other data, or at the end of the data set. 

The framework offers multiple strategies for managing missing data: 

• Linear interpolation derives an estimated value of the missing data in the series. 

• K-nearest neighbor finds the nearest neighbors to a missing datum, identifies the majority value 
represented by the neighbors, and fills in that value for the missing datum. 

• Aggregation strategies: ignore series and ignore point 

Analytics applies the missing data strategy based on the method for filling in the missing data that you use. 
Analytics does not go back and update the history records themselves with the missing data. 

• Linear interpolation 
This interpolation algorithm linearly interpolates the missing values based on the surrounding values in 
the series. 

• K-nearest neighbor (KNN) 
KNN is for numeric, enum and Boolean records. For intervals, other than none, this strategy replaces a 
missing value by calculating the majority value recorded for the item’s k nearest neighbors. 

• Aggregation strategies 
These strategies configure the system to ignore either the aggregated sum of a series with missing data 
or to ignore only the missing values while calculating the aggregated sum of the records with values. 

• Missing data configuration 
Missing data strategies (algorithms) apply to specific types of points. 

• Creating a missing data strategy for a data set 
Setting up a missing data strategy for a specific data set rather than as a global strategy provides a way 
to fine-tune your analytic results. 

• Missing data indication 
The system identifies data that were interpolated on both tabular views as well as report and chart 
views. 

Linear interpolation 

This interpolation algorithm linearly interpolates the missing values based on the surrounding values in the 
series. 

Data missing at the beginning of the series 

There are three locations where data can be missing: 

• At the beginning of the series 

• Interspersed among the series 

• At the end of the series 

The system replaces missing values with the first available value in the series. For example, if M1 is a faulty 

Legal Notice

109



meter installed in Building 1, which fails to record a daily energy reading for three days, and its replacement 
meter records 20 on day four, linear interpolation assigns 20 to each of the missing days. 

Data missing interspersed among the series 

The system replaces missing values by calculating the slope between the last and next collected values. The 
interpolation equation is: 

slope = (nextValue - previousValue) / (nextTimestamp - currentTimestamp) 

For example, meter 1 functioned accurately and logged values for three days after which a fault occurred in the 
meter. It took three days to identify and fix the fault. On day six the system began to log values again. The 
missing values in this data set occur between intervals. If the recorded value for each day at the beginning of the 
series is 20, and the recorded value for the sixth day is 30, the calculation for day four is: 

20 + ((30-20)/(6-3)) = 23.33 

And the calculation for day 5 is: 

20 + ((30-23.33)/(6-5)) = 26.66 

Data missing at the end of the series 

The system replaces missing values with the last recorded value in the series. For example, meter 1 takes a 
reading for each of three days after which it goes into fault for two days, ending the series. The reading for day 
three is 20. It makes no difference what the readings are for days one and two. The system interpolates the value 
for days four and five as 20. 

Parent topic: Missing data management 

K-nearest neighbor (KNN) 

KNN is for numeric, enum and Boolean records. For intervals, other than none, this strategy replaces a missing 
value by calculating the majority value recorded for the item’s k nearest neighbors. 

Boolean data series example 

The number of neighbors to consider is k. The system selects k previous and next nearest neighbors to calculate 
the missing value. If a tie occurs between two values, the algorithm selects the lowest timestamp value. 

For example, the system monitors if meter 1 is on or off reporting a value of true (on) or false (off) every 15 
minutes (the interval). If a value for 2:15 is missing between time stamps 2 pm and 3 pm, and k = 3, the 
system finds the three nearest timestamps to 2:15, which are 1:45, 2:00, and 2:30 and takes the majority of 
these three values. The table records these values: 

Timestamp Meter 1 on state 

1:30 true 

1:45 false 

2:00 true 

2:15 false (interpolated value) 

Legal Notice

110



Timestamp Meter 1 on state 

2:30 false 

2:45 false 

In the example, the majority value, considering the three neighbors, is “false.” The system assigns this value to 
2:15. 

Tie example 

A tie can occur with numeric, Boolean and enum data. The system handles a tie in a particular way: 

1. First, it gives preference to the highest frequency of k nearest neighbors. 

2. Next, when the same frequency (k) of nearest neighbors exists, the system gives preference to the 
value from the record with the timestamp nearest to the missing record. 

3. Finally, when the timestamps are equidistant from the missing data, the system gives preference to the 
record preceding the missing data. 

In Table 1, k=4, its preceding nearest neighbors’ majority value is zero. Its succeeding nearest neighbors’ 
majority value is 1. Using rule 2 above, the system breaks the tie by assigning the missing value to the same 
value as the preceding timestamp (1:45). 

Table 1. K = 4, Same frequency of nearest 
neighbors 

Timestamp Enum data 

1:30 0 

1:45 0 

2:00 0 (interpolated value) 

2:15 1 

2:30 1 

In Table 2, k=1, its preceding nearest neighbor’s value is 1. Its succeeding nearest neighbor’s value is 3. The 
system recorded both values at the same interval before and after the missing value, so it gives preference to the 
preceding timestamp, and sets the missing data value to: 1. 

Table 2. K = 1 Timestamps equidistant from the 
missing data 

Timestamp Enum data 

1:30 0 

1:45 1 

2:00 1 (interpolated value) 

2:15 3 

Legal Notice

111



Parent topic: Missing data management 

Aggregation strategies 

These strategies configure the system to ignore either the aggregated sum of a series with missing data or to 
ignore only the missing values while calculating the aggregated sum of the records with values. 

Ignore series 

This strategy ignores any aggregated sum that includes missing data, even if only a single record is missing. 

For example, a meter is added to a site, and four days later it starts recording energy consumption data. On a 
report or chart configured to aggregate the sum of all energy meters, the system ignores the aggregated sum for 
days 1–3 because the calculation for at least one meter contains missing data. 

Day Meter 1 energy 
values 

Meter 2 energy 
values 

Aggregated values 
(sum) 

1 - 10 - 

2 - 10 - 

3 - 10 - 

4 30 20 50 

5 30 30 60 

The aggregated sum ignores the fact that meter 2 recorded values of 10 for the first three days. 

Ignore point 

This strategy ignores only the values in the interval that are missing and accommodates the recorded values for 
the overall calculation. 

For example, using the same meter as in the example of ignoring the series, the system aggregates the sum of all 
values ignoring only the missing values themselves. 

Day Meter 1 energy 
values 

Meter 2 energy 
values 

Aggregated values 
(sum) 

1 - 10 10 

2 - 10 10 

3 - 10 10 

4 30 20 50 

5 30 30 60 

The system counts Meter 2’s values for days 1–2. 

Parent topic: Missing data management 

Legal Notice

112



Missing data configuration 

Missing data strategies (algorithms) apply to specific types of points. 

These types of points benefit from missing data strategies: 

Interpolation algorithm Numeric Point Boolean Point Enum Point 

K-nearest neighbor þ þ þ 

Linear interpolation þ 

Note: Linear interpolation works on raw history and also when an interval is selected. Any interval can be applied 
to get interpolated records. KNN works only when an interval other than none is selected for the series. 

There are several places where you can set up a missing data strategy: 

• Using the Missing Data Strategy property under the AnalyticService sets up a global strategy that 
applies to every trend request. 

• In a data definition, which applies to any trend request for the specific data set identified by the Id tag. 

• In an Analytic Binding, proxy extension and alert that uses a trend request. 

If no missing data strategy is defined in the Analytic Binding, proxy extension or alert, the system defaults to the 
missing data strategy configured on the data definition for the tagged points. 

If no missing data strategy is defined on the data definition for the tagged points, the system defaults to the 
global strategy defined on the AnalyticsService. 

Parent topic: Missing data management 

Creating a missing data strategy for a data set 

Setting up a missing data strategy for a specific data set rather than as a global strategy provides a way to fine-
tune your analytic results. 

All points are tagged in preparation to run an analytic query. 

1. Expand Config > Services > AnalyticService and double-click Definitions. 
The Analytic Data Manager view opens. 

2. To create a missing-data definition, click New. 
The New window opens. 

3. To accept the default Type to Add (Analytic Data Definition), click OK. 
A second New window opens. 

Legal Notice

113



4. Name the strategy, enter a tag in the Id property, enable Use This Value (set to true), select an 
Interpolation Algorithm, define the RawDataFilter properties used to evaluate each record and click OK. 
The Id tag identifies the data set to include all points tagged in this example with mt:missingData. 
Setting the Low Limit on the RawDataFilter to 1.00 configures the strategy to remove any value that is 
less than 1, which removes any zeros from the data set. 

5. Add an AnalyticWebChart to a PX view. 
The reason to use this type of chart is because it allows you to define a tag that identifies the data to 
return on the chart. 

6. Double-click the chart to open the properties window. 
The widget opens. 

The data property should already be set to the tag you entered when you created the definition. This 
capture shows the same binding configuration but with KNN-1 enabled. 

7. Configure the data property to the tag you entered when you created the definition. 
8. Set any other properties you ignored when you created the definition, including aggregation, rollup, 

missingDataStrategy, or outlier handling. and click OK. 
You should be able to identify the interpolated date points in the chart. 

Legal Notice

114



The tool tips identify the interpolated data. 

9. For another way to configure each chart, click the configuration icon ( ). 
The Settings window opens. In this window changes to the Missing Data Strategy overrides directly in 
the chart. An end user could use this configuration feature. 

Parent topic: Missing data management 

Missing data indication 

The system identifies data that were interpolated on both tabular views as well as report and chart views. 

Tabular views 

Across all controls, flags identify interpolated data: 

• {Li} indicates that linear interpolation was applied. 

• {knn} indicates that k-nearest neighbor interpolation was applied. 

• {igp} indicates that Ignore Point was selected for aggregation strategy. 

• { } indicates that no interpolation algorithm was applied. 

• {knn,igp} indicates that k-nearest neighbor interpolation was applied with Ignore Point as 
aggregation strategy. 

Figure 1. Example of a web table with interpolated data 

Legal Notice

115



The Interpolation Status column to the right indicates how the data were interpolated. 

Figure 2. Example of a bound table with interpolated data 

The Trend Flags column contains the interpolated data flags. 

Note: Ignore Seriesnever triggers a flag because this property causes the system to ignore the entire series. 
Interpolated data do not appear in the table, report or chart. This was the framework’s default behavior when 
no data are available. 

Charts 

A tool tip on a chart indicates an interpolated or a real record. 

Figure 3. Numeric writable chart 

Legal Notice

116



The tool tip indicates that no interpolation algorithm was applied. 

Reports 

Reports provide interpolated data in a separate column. To view these data, you must enable Show Interpolation 
Status in advanced settings. 

Figure 4. A report configured to show interpolated data 

The interpolated data are visible in the table. 

Parent topic: Missing data management 

Legal Notice

117



Troubleshooting 

Make sure all cables are correctly connected and all equipment turned on. This topic covers general issues that 
occur after the system is installed and configured. 

Definitions 

If you are having difficulty visualizing data that appears to be configured correctly, make sure that you have a 
definition for each tag. This is especially important if you created your own tag dictionary. When you create a 
definition, you associate it with a tag by entering the tag name space and name in the Id property. To set up 
definitions, expand Services > AnalyticService > Definitions. 

Logs 

System logs contain information you can use when debugging problems. 

If a point matches the criteria required to generate an alert, appears in a Proxy Extension, or is included in a 
binding, but the point does not have an a:a tag, the system logs an error. The log level for this error is FINER. At 
the default info log level, the system does not print this error, but you can change the analytics log level using 
the Station spy option to view the FINER log. 

• Point status 
Point status reports the current status flag(s). More about these flags and point status is in Getting 
Started with Niagara 

• Enabling error logging 
To debug, configure the module you are working with to output all error messages to the station log. 
This involves configuring the Spy. 

• HTTP ERROR: 500 Privileged Action Exception 
If, after upgrading the Niagara software on a Windows Supervisor, you get this error when you open the 
station in a browser: HTTP ERROR 500, Privileged Action Exception, follow this procedure. 

• Scenarios 
Use this topic to read about a condition others have experienced that you may also experience, and 
what to do about it. 

Point status 

Point status reports the current status flag(s). More about these flags and point status is in Getting Started with 
Niagara 

The status of points, especially proxy points, may explain what appears or does not appear as expected in a 
bound table or on a web chart. The following summarizes the meaning of each status and what, if anything, to 
do about it. 

Table 1. Point status 

Status Description Remedy 

alarm The point has a value in an alarm range as defined by a 
property in its alarm extension. 

Acknowledge the alarm, investigate 
and fix the condition that caused the 
alarm. 

down Driver communication with the parent device as configured 
in the extension has been lost. All proxy point children of the 
device report a status of “down.” This status originates from 

Confirm that the parent device is on 
line and functioning correctly. 

Legal Notice

118



Status Description Remedy 

a proxy point only. 

disabled The proxy extension has been disabled. Polling stops for the 
point. This status originates from a proxy point only. 

Enable the proxy extension. 

fault Typically, this indicates a configuration or license error. If a 
fault occurs following normal {ok} status, it could be a 
condition detected within the device, or perhaps some other 
fault criterion that was met. 

Check the point’s proxy extension’s 
Fault Cause text for more information. 

null Indicates no status is available. Algorithm blocks may return 
a value with a null status in some cases. 

Check the point configuration. 

ok Indicates that the point is functioning as expected. No status 
flag(s) are set. 

No action required. 

overridden The functioning of the point has been stopped usually by a 
hardware override switch. 

Make a physical inspection to the 
device. 

stale Since the last poll update, the system has not updated the 
point’s value within the specified Stale Time of its Tuning 
Policy. This status originates from a proxy point only. 

This status clears upon receipt of the 
next poll value. 

Parent topic: Troubleshooting 

Enabling error logging 

To debug, configure the module you are working with to output all error messages to the station log. This 
involves configuring the Spy. 

Note: 

Configure the Spy to output all messages only while debugging. This feature requires system resources and could 
slow operations if left on. 

1. Right-click the station and click Spy. 
The Log Configuration table opens. 

2. Configure the module level to log ALL messages. 
3. Debug the feature. 
4. Change the log level back to a limited number of messages. 

Legal Notice

119



Parent topic: Troubleshooting 

HTTP ERROR: 500 Privileged Action Exception 

If, after upgrading the Niagara software on a Windows Supervisor, you get this error when you open the station 
in a browser: HTTP ERROR 500, Privileged Action Exception, follow this procedure. 

You are connected to the Supervisor station and Workbench is open. 

HTTPBasicScheme is the intended authenticator for use with the Web API protocol. Attempting to access a 
station using a browser URL without this authentication scheme results in the privileged access exception error. 

1. Open the baja palette. 
2. In the palette, expand AuthenticationSchemes > WebServicesSchemes and drag the HTTPBasicScheme 

authenticator component to the Config > Services > AuthenticationService > AuthenticationSchemes 
node in the Nav tree. 

3. To create a new user or ensure that an existing user is configured for HTTPBasicScheme authentication, 
expand Config > Services > UserService, double-click the user name, select HTTPBasicScheme for 
Authentication Scheme Name and click Save. 

4. Use an API platform, such as Postman to send an HTTP request to the Analytics Servlet to verify 
functionality. See the Niagara Analytics Web API Protocol document for more details. 

Parent topic: Troubleshooting 

Scenarios 

Use this topic to read about a condition others have experienced that you may also experience, and what to do 
about it. 

Everything was working just fine when suddenly the framework stopped working. 

You may have exceeded the license point limit allowed for your system. This can happen if the 
AutoTagAnalyticPoint property on the AnalyticService property sheet is set to true. This property should be set 
to false, unless you are configuring the system for the first time. 

My chart is not displaying data correctly. 

Confirm that the number of bindings is correct. If more bindings are specified than are required, nothing 
happens. Binding support is as follows: 

• Average Profile Chart supports a single binding. 

• Ranking Chart supports multiple bindings. 

• Equipment Operation Chart supports a single binding. 

• Load Duration supports multiple bindings. 

• Relative Contribution Chart supports multiple bindings. 

• Spectrum Chart supports a single binding. 

I configured the Time Range and Interval, but my Spectrum Chart is completely blank. 

If the Spectrum Chart binding returns less than three data points (that is 0, 1 or 2 data points), the chart fails and 

Legal Notice

120



reports an exception. To investigate, calculate the total number of expected data points by dividing Time Range 
by Interval. and adjust the Time Range or Interval to report three or more data points. 

How do I limit the data source to average for a min/max of one day in an algorithm? 

Enable User Request Rollup on the data source and set Rollup to min or max as required. 

I can add an Analytic Web Chart Binding to a web widget and configure it, but I cannot 
seem to get it to work. 

After adding the Analytic Web Chart Binding, double-click the widget to open the Properties view, and delete the 
default WbView Binding. 

I tried to use the Analytic Value Binding, but where do I define the time range and rollup 
functions? 

The Analytic Value Binding gives the current value without any rollup. 

I imported histories and points under my NiagaraNetwork from my remote host and 
tagged them, but I cannot visualize anything. 

Enable the Persist Fetched Tags on the AX Property Sheet of the NiagaraNetwork driver, right-click on the 
Niagara Driver and click Actions > Force Update Niagara Proxy Points. This should apply a direct n:history tag 
to each NiagaraNetwork point where the point from the remote station has a history that has been imported to 
this station. 

I want my algorithm to return trend results if a value was less than or equal to zero. 
Algorithm results show in a bound label but not on a web chart. 

The bound label is likely resolving an analytic value request, whereas the web chart is resolving an analytic trend 
request. It it likely the control point does not have an n:history tag used by the framework to locate the history 
data. For a NiagaraNetwork, right-click the Config > Drivers > NiagaraNetwork folder in the Nav tree and click 
Actions > Force Update Niagara Proxy Points. This applies a direct n:history tag to any point that lacks a 
history extension. 

For all other networks, use a Program Object in the V2 bog file to add an n:history tag to each point. 

I’m running in a JACE-8000. My Web chart causes a server session time-out. 

Check to see if you have specified a COV (change of value) point directly in the binding. A COV point that changes 
frequently can cause CPU spikes. As a best practice, instead of specifying the COV point directly, specify its 
parent in the binding. For other point types, configure a less frequent Refresh Rate in the binding to minimize 
CPU spikes. 

I notice that, when I run PX views, my JACE-8000 slows down, and sometimes reports 
server session time out errors. 

For best performance on the JACE-8000, limit the number of points configured in a PX view to 100–200 with no 
more than 200 tags, 500 history rollups and five bindings. For more complicated configurations, set up PX 
graphics in a Supervisor station running on a PC. 

Legal Notice

121



For an analytic request (binding, alert, etc.), the unit of measure output from an algorithm 
is not being converted correctly or it does not match the unit set in the algorithm. 

Check the algorithm to ensure that the correct unit of measure is defined (by facets on the algorithm’s property 
sheet). Algorithms perform no unit conversion from data source to algorithm output. The unit of measure 
defined in the algorithm’s facets is directly output with the calculated value. This makes it imperative to define 
the correct unit of measure on the algorithm’s property sheet. 

For a series of chained algorithms, for example: Algorithm 1 becomes a data source for Algorithm 2, which, in 
turn, becomes a data source for a Px binding, the system converts the output unit from Algorithm 1 (assuming 
the Algorithm 1 unit is defined in its facets) to the unit specified for the data source in Algorithm 2. If Algorithm 1 
has no unit defined, and Algorithm 2 has the unit defined, Algorithm 2 applies its unit of measure to the input it 
receives from Algorithm 1. 

I configured a data source for my web chart, but the system says that the data source is 
not available. 

Check the station log to identify the origin of the request for data. 

Figure 1. Station log 

A request from a graphic is classified as a user request. This is followed by which point, node, and user are 
involved in this request, as well as the name of the algorithm in which the request was made. The multiple 
origins in the screen capture example represent nested algorithms. 

If this does not help you solve the problem, open the Property Sheet for the AnalyticService, and set Skip Data 
Source Cache to true. The framework engine caches memory to improve response time. Disabling memory 
cache, by setting this property to true, causes the system to display the current error in the station log. 

Note: When you are finished debugging, make sure you set Skip Data Source Cache to false again so not to 
impact performance. 

I am trying to figure out why an alert occurred. 

Check the station log. It shows which point generated the user request that triggered the alert along with the 
alert name. 

Legal Notice

122



I tagged points to be used with analytics and my AnalyticService is now in fault and all 
analytic requests fail. What happened? 

There is more than one reason for this to happen: 

• Auto Tag Analytic Point on the AnalyticService Property Sheet is set to false. 

• It is a licensing issue. The number of points you can use for the framework is limited by your license. If 
you tag more points than you are licensed to use, the service goes into fault. Update your license to add 
more points or remove the extra tags. 

I set up a Source Name for an alert expecting that the text and BFormat I entered would 
display in the alarm console. Instead, the alarm console displays the default BFormat 
(%node.navName%_%alert.name%) in its Source column. 

You have a syntax error in your BFormat. Clicking the Notes button displays this message, “The BFormat value for 
sourceName is invalid for alert AnalyticAlert.” where AnalyticAlert is replaced by the name you configured for 
the alert. Check the Reference manual for examples of BFormat syntax. 

After changing an algorithm, refreshing cache can take as long as 20 minutes. What is 
going on? 

Refresh Cache calculates data memory requirements again by searching all hierarchies. Depending on the 
hierarchical structure of your data, this could take some time. 

Parent topic: Troubleshooting 

Legal Notice

123



Glossary 

The following glossary entries relate specifically to the topics that are included as part of this document. 

To find more glossary terms and definitions refer to glossaries in other individual documents. 

Alphabetical listing 

• aggregation 
• alert 
• algorithm 
• analytics 
• COV or Cov 
• data definition, definition 
• data model 
• direct tag/relation 
• implied tag/relation 
• origin entity 
• request 
• rollup 
• scope 
• tag 
• trend 

aggregation 

The process of combining multiple pieces of the same type of data into a single value (sum, average, maximum, 
minimum, median, etc.) Each piece of information comes from a different data source. The request for the 
specific type of data starts at a specific node and travels down the data model tree aggregating all sources 
(points) tagged with the search argument tag. 
Parent topic: Glossary 

alert 

A warning regarding a condition identified by a Niagara Analytics Framework that can be routed to an alarm or 
used to visualize real-time and historical data. 
Parent topic: Glossary 

algorithm 

A formula that uses real-time values, historical trend data, and the results of calculations made by other 
algorithms to analyze data collected by the system. 
Parent topic: Glossary 

analytics 

The discovery and presentation of meaningful patterns in data. Analytics rely on the simultaneous application of 
statistics and computer programming to quantify performance, communicating the results on graphs and charts, 
as well as using results to control devices. 
Parent topic: Glossary 

Legal Notice

124



COV or Cov 

Change-of-Value. Characterizes the option to track data based on when a value changes rather than at a 
consistent interval, such as every minute, 15 minutes, etc. 
Parent topic: Glossary 

data definition, definition 

Defines the type of information a request is looking for, such as real energy, zone temperature, air flow quantity, 
set point, phase A amperage, phase B amperage. Definitions are related to tags in that the definition Id is the tag 
name space and name used to search the database. 
Parent topic: Glossary 

data model 

A hierarchical tree structure that organizes points based on the usage or reporting of information rather than on 
the drivers required to manage physical devices. A typicalNiagara station is built around device drivers (lon, 
bacnet, modbus device, etc.). Data modeling allows you to structure information in potentially more useful ways, 
such as by geographic location, equipment type or responsible party. 
Parent topic: Glossary 

direct tag/relation 

A tag or relationship that has been manually associated with an entity. 
Parent topic: Glossary 

implied tag/relation 

A tag or relationship tag automatically assigned by the system to an entity. 
Parent topic: Glossary 

origin entity 

The object in a hierarchy from which a search begins. 
Parent topic: Glossary 

request 

The query for input data that seeks either a point’s current or historical value. 
Parent topic: Glossary 

rollup 

The process of combining historical data for a single data source into one value (sum, maximum, minimum, 
average, etc.). 
Parent topic: Glossary 

scope 

In programming, the range within a program’s source code within which an element name is recognized without 
qualification. Variable definitions are not limited to the beginning of a block of code, however, they must be 
declared before they can be used. In Niagara, the scope of an action applies to the selected components. The 

Legal Notice

125



component tree is hierarchical. If you delete or move a component that contains other components, you are 
deleting or moving all items that are contained in that container component (its scope). 
Parent topic: Glossary 

tag 

A piece of semantic information (metadata) associated with a device or point (entity) for the purpose of filtering 
or grouping entities. Tags identify the purpose of the component or point and its relationship to other entities. 
For example, you may wish to view only data collected from meters located in maintenance buildings as opposed 
to those located in office buildings or schools. For this grouping to work, the metering device in each 
maintenance building includes a tag that associates the meter with all the other maintenance buildings in your 
system. 

Controllers are associated with Supervisors based on tags; searching is done based on tags. 

Tags are contained in tag dictionaries. Each tag dictionary is referenced by a unique namespace. 

Parent topic: Glossary 

trend 

The result of analyzing historical data collected by the system. A trend involves rolling up data into meaningful 
intervals. 
Parent topic: Glossary 

Legal Notice

126


	Legal Notice
	Confidentiality
	Trademark notice
	Copyright and patent notice

	About this guide
	Audience
	Document Content
	Product Documentation
	Document change log
	May 30, 2023
	November 3, 2022
	October 19, 2022
	October 23, 2020
	March 10, 2020
	June 14, 2019
	April 30, 2019
	September 5, 2018
	Related documentation

	Getting started
	Hierarchical data model tree structure
	Configuration overview
	Prerequisites
	Niagara certification
	Supported hosts
	Memory requirement
	License requirement and limitations
	Modules required
	Core software and modules required
	Browser requirement
	Station configuration
	Setting up a station
	Installing on a remote host
	About licensing
	Configuring the service for licensing
	Determining the number of points used
	Confirming that the AnalyticsService component is licensed

	Setting up user authentication
	Features
	How Analytics works
	The framework in the Nav tree
	Drivers container
	The AnalyticService
	HierarchyService
	Hierarchy folder
	TagDictionaryService
	Folder to contain Analytics’ logic
	Files folder
	Analytics library

	Tags, hierarchies and relationships
	Tags: direct and implied
	Creating a tag dictionary
	Applying a direct tag
	Setting up implied tag rules
	Tagging proxy points with n:history
	BACnet Network points with n:history
	Associating definitions with tags
	Changing the default behavior of a tag
	Tag inheritance and the a:a tag
	Removing all a:a tags

	Hierarchy setup
	Relationships

	Algorithms, alerts and alarms
	DataSourceBlocks and calculations
	Aggregation configuration
	Example: data aggregation
	Rollup configuration
	Data filter configuration
	Totalize configuration
	Unit conversion

	Creating an algorithm
	Defining the data source
	Filtering algorithm input data
	Logic
	Using algorithm results in standard logic
	Example: Monitoring temperature and humidity
	Example: Removing unwanted data
	Demand Range Filter Algorithm
	Wire sheet view
	Example: Fault detection

	Creating an alert
	Viewing an alert in the alarm console
	Real-time request configuration
	Aggregation defined by data definition or proxy extension
	Aggregation defined by an algorithm

	Trend Interval defined in a binding
	Trend Interval defined in a proxy extension
	COV histories
	COV configuration in a remote station
	Algorithm Min and Max Intervals
	Algorithm Makes Trends property

	Best practices
	Running in a remote controller
	Refreshing cache memory
	Algorithms
	Interval alignment
	Debug block
	Frequently-asked algorithm questions
	How do the alert Time Range and Interval properties affect the calculation of an algorithm?
	How do I set up an algorithm and alert with data sources that use a mix of COV and Interval history extensions?
	How do I get an alert to return to normal once the alert condition has cleared?
	What are the default settings on the alert property sheet slots for Time Range, Aggregation, Interval, Rollup, and Totalize?
	What specifically does the Totalize property do?
	How do I accommodate trends with offset time stamps. How does that affect an algorithms operation?


	Data visualization
	Rollup and aggregation
	Both features share the same set of functions
	When the difference between two values matters
	Best practice
	Changing rendering limitations
	Automatic conversion of values in tables
	Number conversion
	Decimal number conversion
	Historical comparisons using baselineValue
	Configuring a baselineValue in charts and tables
	Pre-defined charts
	Configuring a pre-defined chart
	Creating a new Px view
	Creating a new Ux chart
	Observing patterns using the Spectrum chart
	Changing the aggregation function
	Setting up an analytic table binding

	Reports
	Creating Ux reports
	Managing Ux reports
	Creating a dashboard
	Configuring a report or a dashboard
	Normalizing energy consumption values based on floor area
	Normalizing energy consumption values based on degree-day temperature
	Printing a report


	Outlier handling
	Filtering data with the status filter
	Filtering data with the raw data filter
	Raw data filter example

	Missing data management
	Linear interpolation
	Data missing at the beginning of the series
	Data missing interspersed among the series
	Data missing at the end of the series
	K-nearest neighbor (KNN)
	Boolean data series example
	Tie example
	Aggregation strategies
	Ignore series
	Ignore point
	Missing data configuration
	Creating a missing data strategy for a data set
	Missing data indication
	Tabular views
	Charts
	Reports

	Troubleshooting
	Definitions
	Logs
	Point status
	Enabling error logging
	HTTP ERROR: 500 Privileged Action Exception
	Scenarios
	Everything was working just fine when suddenly the framework stopped working.
	My chart is not displaying data correctly.
	I configured the Time Range and Interval, but my Spectrum Chart is completely blank.
	How do I limit the data source to average for a min/max of one day in an algorithm?
	I can add an Analytic Web Chart Binding to a web widget and configure it, but I cannot seem to get it to work.
	I tried to use the Analytic Value Binding, but where do I define the time range and rollup functions?
	I imported histories and points under my NiagaraNetwork from my remote host and tagged them, but I cannot visualize anything.
	I want my algorithm to return trend results if a value was less than or equal to zero. Algorithm results show in a bound label but not on a web chart.
	I’m running in a JACE-8000. My Web chart causes a server session time-out.
	I notice that, when I run PX views, my JACE-8000 slows down, and sometimes reports server session time out errors.
	For an analytic request (binding, alert, etc.), the unit of measure output from an algorithm is not being converted correctly or it does not match the unit set in the algorithm.
	I configured a data source for my web chart, but the system says that the data source is not available.
	I am trying to figure out why an alert occurred.
	I tagged points to be used with analytics and my AnalyticService is now in fault and all analytic requests fail. What happened?
	I set up a Source Name for an alert expecting that the text and BFormat I entered would display in the alarm console. Instead, the alarm console displays the default BFormat (%node.navName%_%alert.name%) in its Source column.
	After changing an algorithm, refreshing cache can take as long as 20 minutes. What is going on?

	Glossary
	Alphabetical listing
	aggregation
	alert
	algorithm
	analytics
	COV or Cov
	data definition, definition
	data model
	direct tag/relation
	implied tag/relation
	origin entity
	request
	rollup
	scope
	tag
	trend


