

EN 55032:2015+A11:2020+A1:2020

EN 55035:2017+A11:2020

EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013+A1:2019+A2:2021

TEST REPORT

For

Xiamen Milesight IoT Co., Ltd.

Building C09, Software Park Phase III, Xiamen 361024, Fujian, China

Tested Model: UG67-L04EU-868M Multiple Models: UG67-L00E-868M, UG67-868M,UG67-L04EU-868M-H32, UG67-L00E-868M-H32, UG67-868M-H32, UG67-868M-H512,UG67-L04EU-868M-H512, UG67-L00E-868M-H512,UG67-868M-H8, UG67-L04EU-868M-H8,UG67-L00E-868M-H8

Report Type: Product Type:

Amended Report LoRaWAN Gateway

Report Number: XMDN220516-20735E-01A1

Report Date: 2022-06-10

Reviewed By: Rocky Xiao RF Engineer

> Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan,

Guangdong, China

Test Laboratory: Tel: +86-769-86858888

Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
Declarations	
Exhibit B – Eut Photographs	
DECLARATION LETTER	
RELOW IS THE ORIGINAL REPORT	-

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RXM210219050-01	Original Report	2021-09-17
1	XMDN220516-20735E-01A1	Amended Report	2022-06-10

Note: This is the first amended report application which was based on the original report. The differences between them as following:

- 1. Changed the applicant's address to **Building C09**, **Software Park Phase III**, **Xiamen 361024**, **Fujian**, **China**;
- 2. Added EUT models: UG67-868M-H512, UG67-L04EU-868M-H512, UG67-L00E-868M-H512, UG67-868M-H8, UG67-L04EU-868M-H8, UG67-L00E-868M-H8;
- 3. Changed the trade name to Milesight,
- 4. Change the **silk screen** on the EUT appearance;
- 5. Upgraded the standard to EN 55032:2015+A11:2020+A1:2020, EN 61000-3-3:2013+A1:2019+A2:2021.

The change between the previous equipment and the current equipment is stated and guaranteed by the applicant. The difference between them will not affect the test results, we will keep the test results, test photos, but updated the related EUT photos.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " Δ ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "\(\brian\)".

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: XMDN220516-20735E-01A
EXHIBIT B – EUT PHOTOGRAPHS	
Foundation in this parties also see for the second N. V. (DN)	220516 20725E 0241 EVHIDIT 4
For photos in this section, please refer to report No.: XMDN	220516-20735E-02A1 EXHIBIT A.

DECLARATION LETTER

Xiamen Milesight IoT Co., Ltd.

Add:Building C09, Software Park Phase III, Xiamen 361024, Fujian, China

Tel: 0592-5023060 Fax: 0592-5023065

Emal: tongzl@ursalink.com

DECLARATION OF SIMILARITY

Date: 2022-5-9

To whom it may concern

We, Xiamen Milesight IoT Co., Ltd., hereby declare that the product: LoRaWAN Gateway, model:UG67-L00E-868M,UG67-868M,UG67-L04EU-868M-H32,UG67-L00E-868M-H32, UG67-868M-H32,UG67-868M-H512,UG67-L04EU-868M-H512,UG67-L00E-868M-H512, UG67-868M-H8,UG67-L04EU-868M-H8,UG67-L00E-868M-H8 is electrically identical with the model: UG67-L04EU-868M which was tested by BACL with the same electromagnetic emissions and electromagnetic compatibility characteristics.

A description of the differences between the tested model and those that are declared similar are as follows:

The models have same software.

All the above models share one PCB board. The only difference between models is that some function devices paste or not paste. The below table show differences:

√: paste --: not paste

	LTE module	WiFi	GPS	POE	LoRa	External antenna	Other differences
UG67-L04EU-868M	√ (EC25-EUX)	√	√	√	√(868)	√	model names
UG67-L00E-868M	√ (EC25-EUX)	1	√	√	√(868)	√	innes
UG67-868M		√	√	~	√(868)	√	
UG67-L04EU-868M-H32	√ (EC25-EUX)	~		~	√ (868)	~	model names
UG67-L00E-868M-H32	√ (EC25-EUX)	1		~	√(868)	√	
UG67-868M-H32		√		~	√(868)	√	
UG67-868M-H512		√		√	√ (868)	√	
UG67-L04EU-868M-H512	√ (EC25-EUX)	~		1	√(868)	√	model names
UG67-L00E-868M-H512	√ (EC25-EUX)	√		~	√(868)	1	
UG67-868M-H8		√		√	√ (868)	√	
UG67-L04EU-868M-H8	√ (EC25-EUX)	✓		~	√(868)	~	model names

UG67-L00E-868M-H8	√	~	 √	√(868)	√	
	(EC25-EUX)					

Please contact me should there be need for any additional clarification or information. Best Regards,

Signature:

thenlong Tong

Printed Name: Zhenlong Tong

Title: Manager

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: XMDN220516-20735E-01A
BELOW IS THE ORIG	INAL REPORT

Page 7 of 7

EN 55032:2015+A11:2020

EN 55035:2017+A11:2020

EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013+A1:2019

TEST REPORT

For

Xiamen Milesight IoT Co., Ltd.

4/F,NO. 63-2 Wanghai Road, 2nd Software Park,Xiamen,China

Tested Model: UG67-L04EU-868M Multiple Models: UG67-L00E-868M, UG67-868M, UG67-L04EU-868M-H32, UG67-L00E-868M-H32, UG67-868M-H32

Report Type: Product Type:

Original Report LoRaWAN Gateway

Report Number: RXM210219050-01

Report Date: 2021-09-17

Reviewed By: Rocky Xiao RF Engineer

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan,

Test Laboratory: Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

Report No.: RXM210219050-01

General Information	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
TEST METHODOLOGY	
DECLARATIONS	5
System Test Configuration	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	6
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
TEST EQUIPMENT LIST	
Summary of Test Results	
1 - Conducted emissions	
MEASUREMENT UNCERTAINTY	
TEST SYSTEM SETUP	
EMI TEST RECEIVER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST PROCEDURE	
	_
2 – Radiated emissions	
MEASUREMENT UNCERTAINTY	
TEST SYSTEM SETUP	
EMI TEST RECEIVER SETUP.	
Test Procedure	
TEST DATA	
3 – Electrostatic discharges IEC 61000-4-2	25
MEASUREMENT UNCERTAINTY	
TEST SYSTEM SETUP	
TEST STANDARD.	
TEST PROCEDURE	26
Test Data	27
4 – Continuous radiated disturbances IEC 61000-4-3	29
MEASUREMENT UNCERTAINTY	29
TEST SYSTEM SETUP	
Test Standard	29
TEST LEVEL	
TEST PROCEDURE	
TEST DATA	
5 – Continuous conducted disturbances IEC 61000-4-6	
MEASUREMENT UNCERTAINTY	
TEST SETUP	
Test Procedure	
TEST PROCEDURE	
TEST DATA	32

6 – Power frequency magnetic fields IEC 61000-4-8	33
TEST SETUP	33
TEST STANDARD	
TEST LEVEL	
TEST PROCEDURE	
TEST DATA	34
7 – Electrical fast transients/burst IEC 61000-4-4	35
MEASUREMENT UNCERTAINTY	35
TEST SYSTEM SETUP	
TEST STANDARD	
TEST PROCEDURE	36
TEST DATA	36
8 – Surges IEC 61000-4-5	37
TEST SYSTEM SETUP	37
TEST STANDARD	37
TEST PROCEDURE	37
TEST DATA	
9 – Voltage dips and short interruptions IEC 61000-4-11	39
TEST SETUP	
TEST STANDARD	
TEST PROCEDURE.	
TEST DATA	40
11 -Voltage fluctuations and flicker	41
TEST SYSTEM SETUP	41
TEST STANDARD	41
TEST DATA	42
ExhibitA – Eut Photographs	43
ExhibitB – Test Setup Photographs	
RADIATED EMISSION	
CONDUCTED EMISSIONS AC	46
FLICKER	
RS	49
ESD	
EFT	51
CS	52
PFMF	53
DIPS	54
SURGE	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	LoRaWAN Gateway
Test Model:	UG67-L04EU-868M
Multiple Models:	UG67-L00E-868M, UG67-868M, UG67-L04EU-868M-H32,UG67-L00E-868M-H32, UG67-868M-H32
Model Difference:	Refer to Dos
Rated Input Voltage:	DC 56V from POE
Serial Number:	RXM210219050-RF-S1
EUT Received Date:	2021.02.20
EUT Received Status:	Good

Report No.: RXM210219050-01

Objective

This report is prepared on behalf of *Xiamen Milesight IoT Co., Ltd.* in accordance with EN 55032:2015+A11:2020 Electromagnetic compatibility of multimedia equipment — Emission Requirements;

EN 55035:2017+A11:2020 Electromagnetic compatibility of multimedia equipment — Immunity Requirements;

EN IEC 61000-3-2:2019+A1:2021 Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current ≤ 16 A per phase);

EN 61000-3-3:2013+A1:2019 Electromagnetic compatibility (EMC)Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection.

The objective is to determine the compliance of EUT with:

EN 55032:2015+A11:2020

EN 55035:2017+A11:2020

EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013+A1:2019.

Test Methodology

All measurements contained in this report were conducted with EN 55032:2015+A11:2020 Electromagnetic compatibility of multimedia equipment — Emission Requirements; EN 55035:2017+A11:2020 Electromagnetic compatibility of multimedia equipment — Immunity Requirements; EN IEC 61000-3-2:2019+A1:2021 Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current \leq 16 A per phase); EN 61000-3-3:2013+A1:2019 Electromagnetic compatibility (EMC)Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current \leq 16 A per phase and not subject to conditional connection.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(\Lambda \)". Customer model name, addresses, names, trademarks etc. are not considered data.

Report No.: RXM210219050-01

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "*\pm".

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Report No.: RXM210219050-01

Test Mode 1: GPRS/EGPRS communication (working and monitoring with CMU200)

Test Mode 2: WCDMA/ HSPA communication (working and monitoring with CMU200)

Test Mode 3: LTE communication (working and monitoring with CMW500)

Test Mode 4: WIFI link (working and monitoring with CMW500)

Test Mode 5: Lora working (monitoring with FSU26)

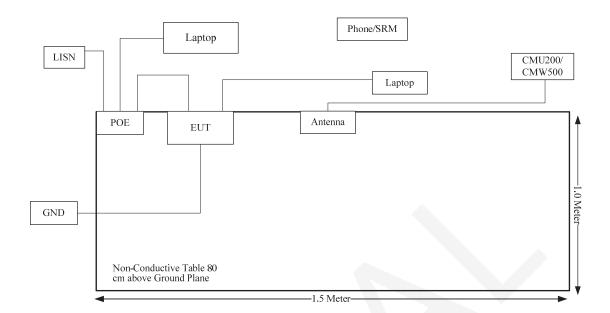
Test Mode 6: GPS receiving (working with N5182B and monitoring with CCD camera and FSU26)

Equipment Modifications

No modification was made to the EUT.

EUT Exercise Software

No software was used.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Dell	Laptop	E6410	586N3Q1
R&S	Universal Radio Communication Tester	CMU200	110 822
R&S	Wideband Radio Communication Tester	CMW500	149216
Prestigio Plaza	Laptop	PSB141C05CGP_DG	CB04060626
Badge	Messenger(Lora)	SRM	190813006

Support Cable List and Details

Cable Description	Shielding Cable	Ferrite Core	Length (m)	From Port	То
AC Line	No	No	1.5	AC main	POE
RJ45	No	No	1.2	POE	EUT
RJ45	No	No	10	POE	Laptop
Type C Cable (and extend cable)	No	No	5	EUT	Laptop

Block Diagram of Test Setup

Test Equipment List

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted er	nission		
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12
TESEQ	ISN	T800	34379	2020-09-12	2021-09-12
R&S	EMI Test Receiver	ESCI	101121	2020-07-07	2021-07-07
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A
	Ra	diated emissions	below 1GHz		
Sunol Sciences	Antenna	ЈВ3	A060611-2	2020-08-25	2023-08-25
R&S	EMI Test Receiver	ESCI	100224	2020-09-12	2021-09-12
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2020-09-24	2021-09-24
Sonoma	Amplifier	310N	185914	2020-10-13	2021-10-13
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
	Ra	diated emissions	above 1GHz		
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12
Agilent	Spectrum Analyzer	E4440A	SG43360054	2020-07-07	2021-07-07
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2020-09-05	2021-09-05
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	2020-09-05	2021-09-05
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
E-Microwave	Band-stop Filters	OBSF-2400-2 483.5-S	OE01601525	2020-06-16	2021-06-16
	•	EFT & Surge	& Dips		•
EM TEST	Ultra Compact Generator	UCS 500N5	P1406130994	2021-07-22	2022-07-21
EM TEST	Autotransformer	MV2616	P1450144859	N/A	N/A
EM TEST	CDN	CNV508 S1	311137	2021-01-26	2022-01-25
EM TEST	EFT Clamp	N/A	300886	2021-07-22	2022-07-21
		Flicker & Ha	rmonic		
ELGAR	AC Power Source	1751SX	5611	2020-09-23	2021-09-23
EM TEST	Harmonic & Flicker Analyzer	DPA 500	303278	2020-09-17	2021-09-16
	Tillaryzer	ESD			
HAEFELY	Electrostatic Discharge Simulator	ONYX	180786	2020-09-16	2021-09-16
		CS	-		-
HP	Signal Generator	8648A	3246A00831	2020-09-12	2021-09-12
R&S	Power Amplifier	15A250	12934	N/A	N/A
Werlatone	Dual Directional Coupler	C5091-10	113192	2021-02-09	2022-02-08
НР	Power Meter	HP EPM-441A	GB37481494	2020-09-12	2021-09-12
Agilent	8482A Power sensor	8482A	US37296108	2020-09-12	2021-09-12
NARDA	Attenuator	769-6	2754	N/A	N/A
COM-POWER	CDN	M325E	521064	2020-09-12	2021-09-12
COM-POWER	CDN	T8E	581607	2019-05-09	2022-05-09

Report No.: RXM210219050-01

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RS			
AR	Antenna	ATL80M1G	0351400	N/A	N/A
AR	AR Antenna		0349410	N/A	N/A
HP	Signal Generator	8665B	3438a00584	2020-09-12	2021-09-12
AR	AR Power Amplifier		0353561	N/A	N/A
AR	Power Amplifier	60S1G6	0348711	N/A	N/A
PASTERNACK	ASTERNACK Dual Directional Coupler		1711	2021-07-15	2022-07-14
Agilent	EPM Series Power Meter	E4419B	MY45103907	2020-09-12	2021-09-12
Agilent	E-Series Avg Power Sensor	E9301A	MY41497625	2020-09-12	2021-09-12
Agilent	E-Series Avg Power Sensor	E9301A	MY41497628	2020-09-12	2021-09-12

Report No.: RXM210219050-01

Environmental Conditions

Test Item:	Test Item: Conducted emission		Radiated emissions above 1GHz	EMS & Flicker
Temperature:	Temperature: 26.2°C		27.8°C	25.2~27.3 °C
Relative Humidity: 67%		53%	40%	52~65 %
ATM Pressure:	ATM Pressure: 100.1kPa		100.1kPa	100.4 kPa
Tester: Mia Huang		Burt Hu,	Wade Huang	Mia Huang
Test Date:	2021.06.15	2021.07.02	2021.08.13	2021.09.09

Note: The Relative Humidity in ESD site is 52%.

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

SUMMARY OF TEST RESULTS

SN	Rule and Clause	Description of Test	Test Result
1	EN 55032 Clause A.3	Conducted emissions	Compliance
2	EN 55032 Clause A.2	Radiated emissions	Compliance
3	EN 55035 Clause 4.2.1	Electrostatic discharges IEC 61000-4-2	Compliance
4	EN 55035 Clause 4.2.2.2	Continuous radiated disturbances IEC 61000-4-3	Compliance
5	EN 55035 Clause 4.2.2.3	Continuous conducted disturbances IEC 61000-4-6	Compliance
6	EN 55035 Clause 4.2.3	Power frequency magnetic fields IEC 61000-4-8	Compliance
7	EN 55035 Clause 4.2.4	Electrical fast transients/burst IEC 61000-4-4	Compliance
8	EN 55035 Clause 4.2.5	Surges IEC 61000-4-5	Compliance
9	EN 55035 Clause 4.2.6	Voltage dips and short interruptions IEC 61000-4-11	Compliance
10	EN IEC 61000-3-2	Harmonic current emissions	Not applicable
11	EN 61000-3-3	Voltage fluctuations and flicker	Compliance

Report No.: RXM210219050-01

Note:

Not applicable*: The EUT power is less than 75W

1 - CONDUCTED EMISSIONS

Measurement Uncertainty

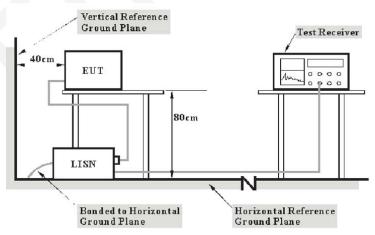
Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: RXM210219050-01

2.9 dB

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If $U_{\rm lab}$ is greater than $U_{\rm cispr}$ of Table 1, then:
- -compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}}-U_{\text{cispr}})$, exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.


Based on CISPR 16-4-2-2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.12 dB (150 kHz to 30 MHz), and conducted disturbance at telecommunication port using AAN is 5.0 dB (150 kHz to 30 MHz).

Measurement	$U_{ m cispr}$
Conducted disturbance at mains port using AMN (9 kHz to 150 kHz)	3.8 dB
(150 kHz to 30 MHz)	3.4 dB
Conducted disturbance at mains port using voltage probe (9 kHz to 30 MHz)	2.9 dB
Conducted disturbance at telecommunication port using AAN (150 kHz to 30 MHz)	5.0 dB
Conducted disturbance at telecommunication port using CVP (150 kHz to 30 MHz)	3 9 dB

Conducted disturbance at telecommunication port using CP (150 kHz to 30 MHz)

Table 1 – Values of U_{cispr}

Test System Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm

from other units and other metal planes support units.

The setup of EUT is according with CISPR 16-1-1:2010+A1:2010, CISPR 16-2-1:2008+A1:2010 measurement procedure. The specification used was the EN 55032 Class A limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40cm long in the middle.

The spacing between the peripherals was 10cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RXM210219050-01

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result (QuasiPeak or Average) = Meter Reading + Corr.

Note:

Corr. = Cable loss + Factor of coupling device

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

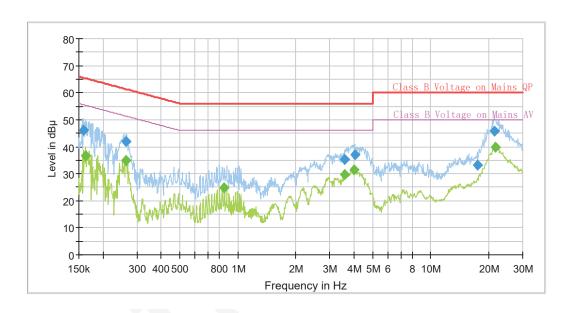
Margin = Limit - Result

Test Procedure

During the conducted emissions test, the adapter was connected to the main outlet of the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the Quasi-peak and average detection mode.


Test Data

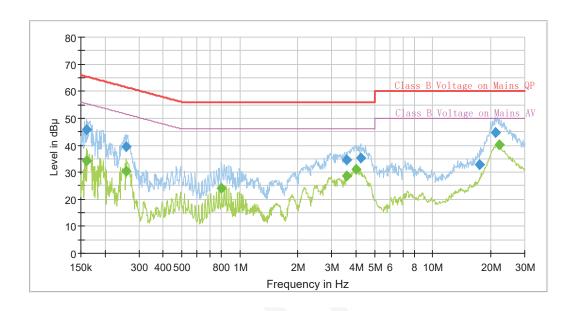
Please refer to following table and plots:

Port:

Test Mode: Test Mode 1_Worst case Power Source: AC 230V/50Hz

Note:

Report No.: RXM210219050-01

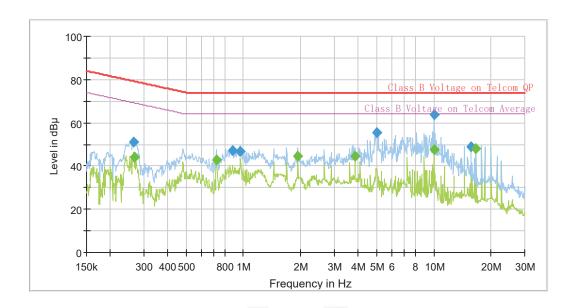

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.158459	45.96		65.54	19.58	9.000	L1	9.6
0.162461		36.72	55.34	18.62	9.000	L1	9.6
0.263546		34.80	51.32	16.52	9.000	L1	9.6
0.263546	42.03	-	61.32	19.29	9.000	L1	9.6
0.850904		24.79	46.00	21.21	9.000	L1	9.7
3.578545		29.67	46.00	16.33	9.000	L1	9.7
3.596438	35.29		56.00	20.71	9.000	L1	9.7
4.013525		31.48	46.00	14.52	9.000	L1	9.7
4.033592	36.93		56.00	19.07	9.000	L1	9.7
17.391943	33.09		60.00	26.91	9.000	L1	10.1
21.338144	45.64	-	60.00	14.36	9.000	L1	10.0
21.552059		39.86	50.00	10.14	9.000	L1	10.0

Port:

Test Mode: Test Mode 1_Worst case Power Source: AC 230V/50Hz

Note:


Report No.: RXM210219050-01

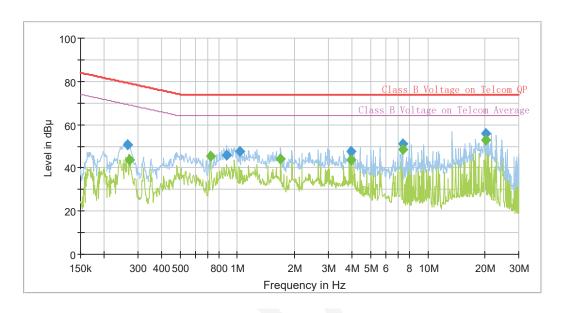
Final Result

Frequency QuasiPeak Average Limit Margin Bandwidth L	ine Corr.
gs Emiliary Editorial E	
(MHz) (dBμV) (dBμV) (dBμV) (dB) (kHz)	(dB)
0.160048 34.26 55.46 21.20 9.000 N	9.6
0.160048 45.76 65.46 19.70 9.000 N	9.6
0.257055 30.38 51.53 21.15 9.000 N	9.6
0.257055 39.65 61.53 21.88 9.000 N	9.6
0.805479 24.15 46.00 21.85 9.000 N	9.6
3.578545 28.68 46.00 17.32 9.000 N	9.6
3.596438 34.42 56.00 21.58 9.000 N	9.6
4.013525 31.15 46.00 14.85 9.000 N	9.6
4.218777 35.40 56.00 20.60 9.000 N	9.6
17.566298 32.87 60.00 27.13 9.000 N	9.9
21.231984 44.81 60.00 15.19 9.000 N	9.9
22.096276 40.08 50.00 9.92 9.000 N	9.9

Port: L
Test Mode: 10Mbps
Power Source: AC 230V/50Hz

Note:

Report No.: RXM210219050-01


Final Result

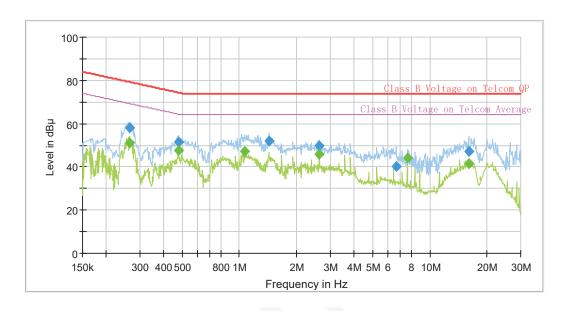
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.			
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)			
0.264864	50.99		79.28	28.29	9.000	Line 1	9.9			
0.268856		43.94	69.15	25.21	9.000	Line 1	9.9			
0.721773		42.62	64.00	21.38	9.000	Line 1	9.7			
0.876753	47.18		74.00	26.82	9.000	Line 1	9.7			
0.963901	46.54		74.00	27.46	9.000	Line 1	9.7			
1.928035		44.49	64.00	19.51	9.000	Line 1	9.6			
3.856537		44.35	64.00	19.65	9.000	Line 1	9.6			
4.998419	55.51		74.00	18.49	9.000	Line 1	9.6			
9.998049	63.54		74.00	10.46	9.000	Line 1	9.6			
9.998049		47.76	64.00	16.24	9.000	Line 1	9.6			
15.662490	49.03		74.00	24.97	9.000	Line 1	9.6			
16.628518		48.10	64.00	15.90	9.000	Line 1	9.6			

Port: N

Test Mode: 100Mbps
Power Source: AC 230V/50Hz

Note:

Report No.: RXM210219050-01


Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.266188	50.74		79.24	28.50	9.000	Line 1	9.9
0.270201		43.81	69.11	25.30	9.000	Line 1	9.9
0.721773		45.60	64.00	18.40	9.000	Line 1	9.7
0.876753	45.92	-	74.00	28.08	9.000	Line 1	9.7
1.023352	47.47		74.00	26.53	9.000	Line 1	9.7
1.685121		44.26	64.00	19.74	9.000	Line 1	9.6
3.953919	47.81		74.00	26.19	9.000	Line 1	9.6
3.953919		43.73	64.00	20.27	9.000	Line 1	9.6
7.375399	51.11		74.00	22.89	9.000	Line 1	9.6
7.375399	-	48.26	64.00	15.74	9.000	Line 1	9.6
20.199004		52.79	64.00	11.21	9.000	Line 1	9.7
20.199004	56.04		74.00	17.96	9.000	Line 1	9.7

Port: L

Test Mode: 1000Mbps
Power Source: AC 230V/50Hz

Note:

Report No.: RXM210219050-01

Final Result

_							
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.264864		50.97	69.28	18.31	9.000	Line 1	9.9
0.264864	58.22		79.28	21.06	9.000	Line 1	9.9
0.477109		47.40	64.39	16.99	9.000	Line 1	9.8
0.479495	51.34		74.35	23.01	9.000	Line 1	9.8
1.070335		47.15	64.00	16.85	9.000	Line 1	9.7
1.429391	51.85		74.00	22.15	9.000	Line 1	9.6
2.626701	49.99		74.00	24.01	9.000	Line 1	9.6
2.626701		45.66	64.00	18.34	9.000	Line 1	9.6
6.641990	40.35		74.00	33.65	9.000	Line 1	9.6
7.637442		44.32	64.00	19.68	9.000	Line 1	9.6
15.978097		41.46	64.00	22.54	9.000	Line 1	9.6
15.978097	47.12		74.00	26.88	9.000	Line 1	9.6
	(MHz) 0.264864 0.264864 0.477109 0.479495 1.070335 1.429391 2.626701 6.641990 7.637442 15.978097	(MHz) (dBµV) 0.264864 0.264864 58.22 0.477109 0.479495 51.34 1.070335 1.429391 51.85 2.626701 49.99 2.626701 6.641990 40.35 7.637442 15.978097	(MHz) (dBμV) (dBμV) 0.264864 50.97 0.264864 58.22 0.477109 47.40 0.479495 51.34 1.070335 47.15 1.429391 51.85 2.626701 49.99 2.626701 45.66 6.641990 40.35 7.637442 44.32 15.978097 41.46	(MHz) (dBμV) (dBμV) (dBμV) 0.264864 50.97 69.28 0.264864 58.22 79.28 0.477109 47.40 64.39 0.479495 51.34 74.35 1.070335 47.15 64.00 1.429391 51.85 74.00 2.626701 49.99 74.00 2.626701 45.66 64.00 6.641990 40.35 74.00 7.637442 44.32 64.00 15.978097 41.46 64.00	(MHz) (dBμV) (dBμV) (dBμV) (dBμV) (dBμV) 0.264864 50.97 69.28 18.31 0.264864 58.22 79.28 21.06 0.477109 47.40 64.39 16.99 0.479495 51.34 74.35 23.01 1.070335 47.15 64.00 16.85 1.429391 51.85 74.00 22.15 2.626701 49.99 74.00 24.01 2.626701 45.66 64.00 18.34 6.641990 40.35 74.00 33.65 7.637442 44.32 64.00 19.68 15.978097 41.46 64.00 22.54	(MHz) (dBμV) (dBμV)<	(MHz) (dBμV) (dBμV)<

2 - RADIATED EMISSIONS

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: RXM210219050-01

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If $U_{\rm lab}$ is greater than $U_{\rm cispr}$ of Table 1, then:
- -compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}}-U_{\text{cispr}})$, exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

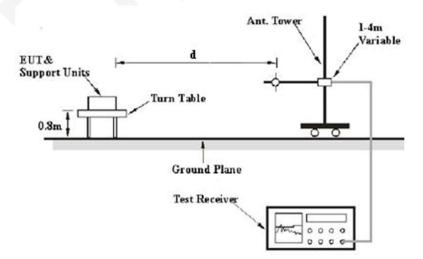
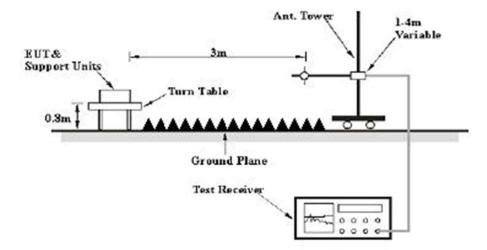

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:30M~200MHz: 4.55 dB for Horizontal, 4.57 dB for Vertical; 200M~1GHz: 4.66 dB for Horizontal, 4.56 dB for Vertical; measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical; 200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical 1G~6GHz: 4.45 dB, 6G~18GHz: 5.23 dB.

Table 1 – Values of U_{cispr}


Measurement					
Radiated disturbance(electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB				
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB				
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB				

Test System Setup

Below 1GHz:

Above 1GHz:

Report No.: RXM210219050-01

The radiated emission tests below 1GHz were performed in 3meters, above 1GHz were performed in the 3 meters, using the setup accordance with the CISPR 16-1-1:2010+A1:2010, CISPR 16-1-4:2010, CISPR 16-2-3:2010. The specification used was EN 55032 Class A limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40cm long in the middle.

The spacing between the peripherals was 10cm.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 6GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	120 kHz	300 kHz	120kHz	QP
Above 1 GHz	1MHz	3 MHz	/	Peak
Above I GHZ	1MHz	10Hz	/	Peak

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

During the radiated emissions, maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Meter Reading+ Corrected

Note:

Corrected = Antenna Factor + Cable Loss - Amplifier Gain

or

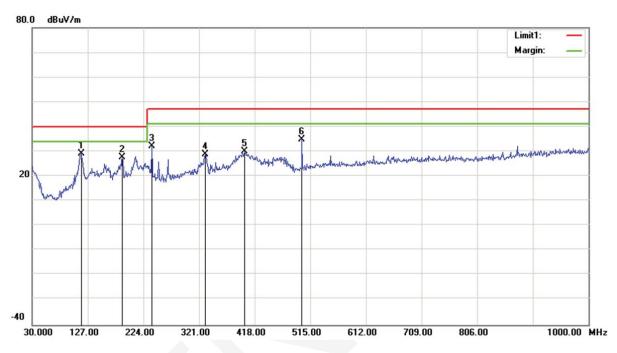
Corrected = Antenna Factor + Cable Loss + Insertion loss of attenuator - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit for Class A. The equation for margin calculation is as follows:

Report No.: RXM210219050-01

Margin = Limit - Result

Test Data

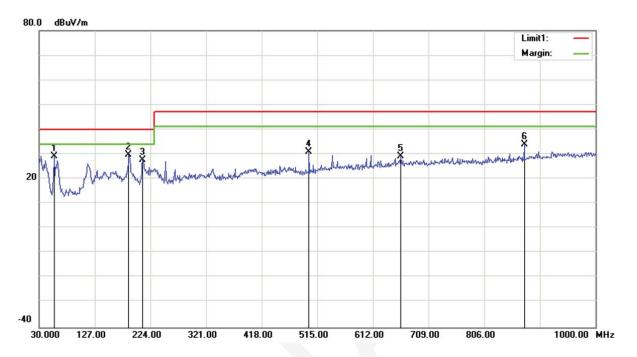

Please refer to following table and plots:

Condition: EN 55032 Class B **Test Mode:**

Note:

Horizontal **Polarization:** Test Mode 4_Worst case **Distance:** 3m

Report No.: RXM210219050-01

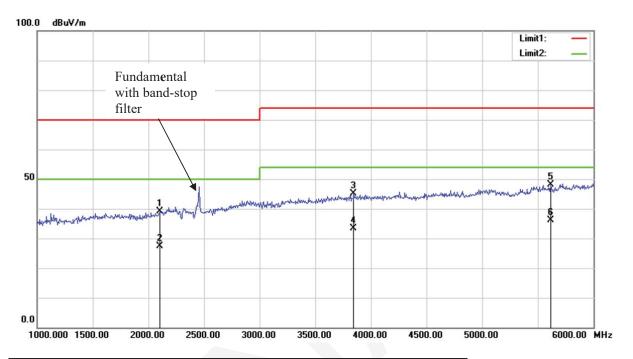


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)
1	115.3600	41.92	peak	-12.76	29.16	40.00	10.84
2	187.1400	37.98	peak	-10.32	27.66	40.00	12.34
3	238.5500	42.15	peak	-10.06	32.09	47.00	14.91
4	331.6700	35.88	peak	-7.00	28.88	47.00	18.12
5	400.5400	35.18	peak	-5.23	29.95	47.00	17.05
6	500.4500	38.22	peak	-3.45	34.77	47.00	12.23

Condition:EN 55032 Class BPolarization:VerticalTest Mode:Test Mode 4_Worst caseDistance:3m

Report No.: RXM210219050-01

Note:

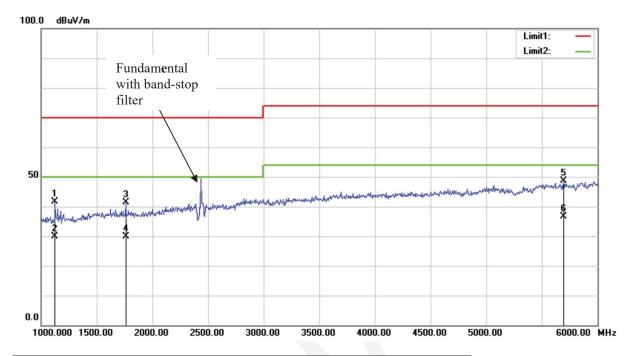


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)
1	56.1900	45.58	peak	-16.32	29.26	40.00	10.74
2	186.1700	39.92	peak	-10.19	29.73	40.00	10.27
3	210.4200	39.02	peak	-11.22	27.80	40.00	12.20
4	500.4500	34.32	peak	-3.45	30.87	47.00	16.13
5	660.5000	29.44	peak	-0.22	29.22	47.00	17.78
6	875.8400	31.33	peak	2.67	34.00	47.00	13.00

Report No.: RXM210219050-01

Condition:EN 55032 Class BPolarization:HorizontalTest Mode:Test Mode 4_Worst caseDistance:3m

Note:



No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)
1	2100.000	35.38	peak	3.82	39.20	70.00	30.80
2	2100.000	23.64	AVG	3.82	27.46	50.00	22.54
3	3845.000	36.25	peak	8.80	45.05	74.00	28.95
4	3845.000	24.64	AVG	8.80	33.44	54.00	20.56
5	5617.500	35.45	peak	12.63	48.08	74.00	25.92
6	5617.500	23.61	AVG	12.63	36.24	54.00	17.76

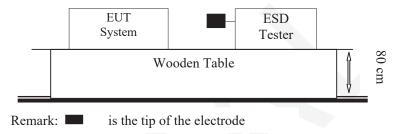
Report No.: RXM210219050-01

Condition:EN 55032 Class BPolarization:VerticalTest Mode:Test Mode 4_Worst caseDistance:3m

Note:

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)
1	1125.000	42.23	peak	-0.55	41.68	70.00	28.32
2	1125.000	30.54	AVG	-0.55	29.99	50.00	20.01
3	1760.000	39.27	peak	2.14	41.41	70.00	28.59
4	1760.000	27.64	AVG	2.14	29.78	50.00	20.22
5	5697.500	35.68	peak	12.96	48.64	74.00	25.36
6	5697.500	23.56	AVG	12.96	36.52	54.00	17.48

3 - ELECTROSTATIC DISCHARGES IEC 61000-4-2


Measurement Uncertainty

 U_{lab} (measurement uncertainty of lab) and U_{EN} (measurement uncertainty of EN 61000-4-2) please refer to the following:

Report No.: RXM210219050-01

Parameter	U_{EN}	$U_{ m lab}$
Rise time t _r	≤15%	15%
Peak current I _p	≤7%	6.30%
Current at 30 ns	≤7%	6.30%
Current at 60 ns	≤7%	6.30%

Test System Setup

IEC61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.6 by 0.8-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

Test Standard

EN 55035:2017+A11:2020(IEC 61000-4-2:2008)

Test level 3 for Air Discharge at ±8 kV

Test level 3 for Contact Discharge at $\pm 6 \text{ kV}$

Test Level

Level	Test Voltage Contact Discharge (±kV)	Test Voltage Air Discharge (±kV)
1.	2	2
2.	4	4
3.	6	8
4.	8	15
X.	Special	Special

Performance criteria: B

Test Procedure

Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Report No.: RXM210219050-01

Contact Discharge:

All the procedure shall be same as Section 8.3.1of IEC 61000-4-2, except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

Indirect discharge for horizontal coupling plane:

At least 50 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

Indirect discharge for vertical coupling plane:

At least 50 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions $0.5 \text{m} \times 0.5 \text{m}$, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Test Data

Please refer to following tables:

Test Mode: Test Mode 1-6

Note:

Table 1: Electrostatic Discharge Immunity (Air Discharge)

Test Points Location				Test	Level			
1650 1 011105 2306001011	-2 kV	+2 kV	-4 kV	+4 kV	-8 kV	+8 kV	-15 kV	+15 kV
Non-metallic Shell	A	A	A	A	A	A	/	/
Seam	A	A	A	A	A	A	/	/

Report No.: RXM210219050-01

Table 2: Electrostatic Discharge Immunity (Direct Contact)

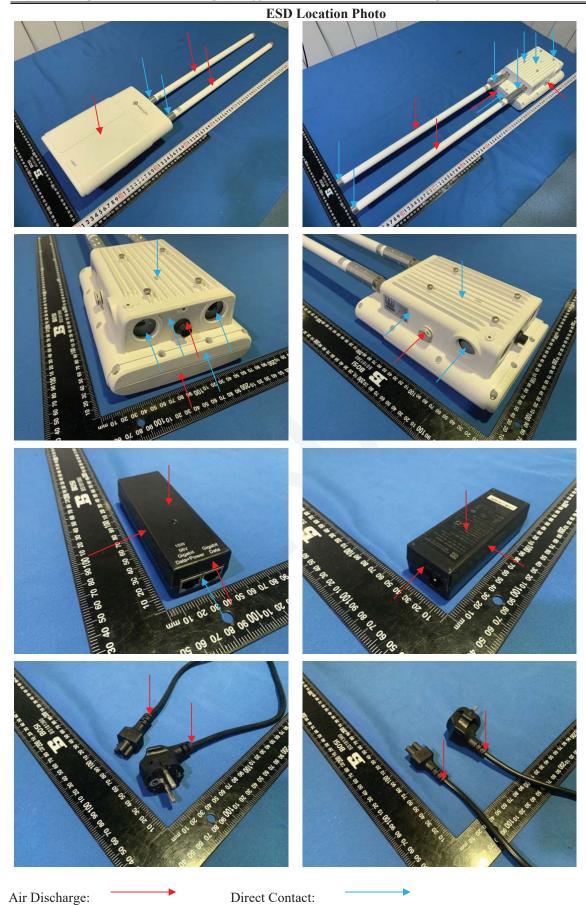

Test Points Location		Test Level							
1650 1 011105 200401011	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	
Metal shell	Α	A	Α	A	A	A	/	/	
USB Port	A	A	A	A	A	A	/	/	
SIM Port	A	A	A	A	A	A	/	/	
RJ45 Port	A	A	A	A	A	A	/	/	
Screw	A	A	A	A	A	A	/	/	

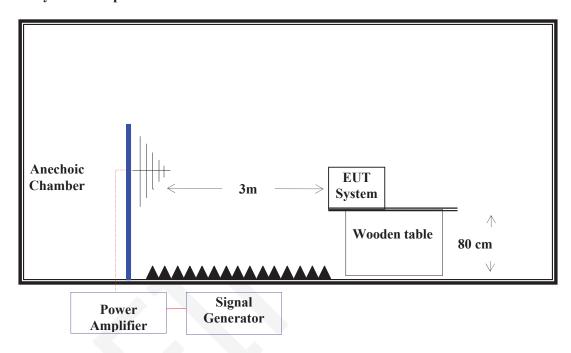
Table 3: Electrostatic Discharge Immunity (Indirect Contact HCP)

Test Points Location		Test Level						
Test Tomas Estation	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV
Front Side	A	A	A	A	A	A	/	/
Back Side	A	A	A	A	A	A	/	/
Left Side	A	A	A	A	A	A	/	/
Right Side	A	A	A	A	A	A	/	/

Table 4: Electrostatic Discharge Immunity (Indirect Contact VCP)

Test Points Location		Test Level						
Test Foliits Location	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV
Front Side	A	A	A	A	A	A	/	/
Back Side	A	A	A	A	A	A	/	/
Left Side	A	A	A	A	A	A	/	/
Right Side	A	A	A	A	A	A	/	/

4 - CONTINUOUS RADIATED DISTURBANCES IEC 61000-4-3


Measurement Uncertainty

 U_{lab} (measurement uncertainty of lab) and U_{EN} (measurement uncertainty of EN 61000-4-3) please refer to the following:

Report No.: RXM210219050-01

Parameter	U_{EN}	$U_{ m lab}$
Calibration process	1.88 dB	1.88 dB
Level setting	2.19 dB	2.19 dB

Test System Setup

Test Standard

EN 55035:2017+A11:2020 (IEC 61000-4-3:2006 + A1:2007 + A2:2010)

Test Level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

Performance criteria: A

Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above the ground. The EUT is set 3 meters away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarizations of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor the EUT.

Report No.: RXM210219050-01

Test Data

Please refer to following tables:

Test Mode: Test Mode 1-6

Note:

Condition of Test	Remarks
Field Strength	10 V/m (Test Level 3)
RF Signal	1 kHz, 80% AM, sine wave
Sweep Frequency Step	1%, logarithmic
Dwell Time	1 Sec

Table 1: Radiated RF-Electromagnetic Field Immunity

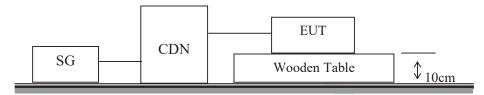
Frequency	From Side		Rea	Rear Side		Left Side		Right Side	
Range (MHz)	VERT	HORI	VERT	HORI	VERT	HORI	VERT	HORI	
80-1000	A	A	A	A	A	A	A	A	

Table 2: Radiated RF-Electromagnetic Field Immunity

Spot Test Front Side		Rear Side		Left Side		Right Side		
(MHz)	VERT	HORI	VERT	HORI	VERT	HORI	VERT	HORI
1800, 2600, 3500, 5000	A	A	A	A	A	A	A	A

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

5 - CONTINUOUS CONDUCTED DISTURBANCES IEC 61000-4-6


Measurement Uncertainty

 U_{lab} (measurement uncertainty of lab) and U_{EN} (measurement uncertainty of EN 61000-4-6) please refer to the following:

Report No.: RXM210219050-01

Parameter	U_{EN}	$U_{ m lab}$
CDN calibration process	1.27 dB	1.27 dB
CDN test process	1.36 dB	1.36 dB

Test Setup

Test Standard

EN 55035:2017 (IEC 61000-4-6:2008)

Frequency(MHz)	Voltage Level
0.15-10	10V
10-30	10V
30-80	10V

Performance criteria: A

Test Procedure

- 1) Let the EUT work in test mode and test it.
- 2) The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 3) The disturbance signal described below is injected to EUT through CDN.
- 4) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 5) The frequency range is swept from 150 kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1 kHz sine wave.
- 6) Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value. The dwell time of the amplitude modulated carrier at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0.5 s.
- 7) Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

Please refer to following tables:

Test Mode: Test Mode 1-6

Note:

Table 1: ____

AC mains power input port

Frequency range: 150 kHz to 80 MHz

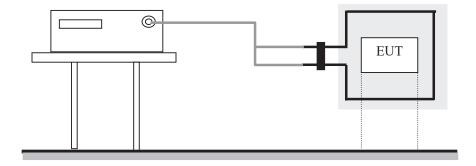
Modulated: Amplitude 80%, 1kHz sine wave □ Unmodulated ■Modulated:

Dwell Time 1 Sec

Frequency(MHz)	Voltage Level	Pass	Fail
0.15-10			
10-30	10V	A	/
30-80			

Table 2: Signal Port : RJ45

Frequency range: 150 kHz to 80 MHz


■Modulated: Amplitude 80%, 1kHz sine wave □Unmodulated □ Other:

Dwell Time 1 Sec

Frequency(MHz)	Voltage Level	Pass	Fail
0.15-10			
10-30	10V	A	/
30-80			

6 - POWER FREQUENCY MAGNETIC FIELDS IEC 61000-4-8

Test Setup

Test Standard

EN 55035:2017+A11:2020&EN 55035:2017+A11:2020(IEC 61000-4-8:2009)

Report No.: RXM210219050-01

Test Level

Level	Magnetic Field Strength A/m
1	1
2	3
3	10
4	30
5	100
X.	Special

Performance criteria: A

Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m). The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

Page 33 of 55

Please refer to following tables:

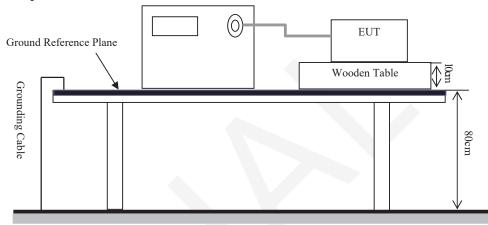
Test Mode: Test Mode 1-6

Note:

Severity Level: 1 A/m(r. m. s)

Level	Magnetic Field Strength (A/m)	X (Horizontal)	Y (Vertical)	Z (Special)
1	1	/	/	/
2	3	/	/	/
3	10	/	/	/
4	30	A	A	A
5	100	/	/	/
X	Special	/	/	/

7 - ELECTRICAL FAST TRANSIENTS/BURST IEC 61000-4-4


Measurement Uncertainty

 U_{lab} (measurement uncertainty of lab) and U_{EN} (measurement uncertainty of EN 61000-4-4) please refer to the following:

Report No.: RXM210219050-01

Parameter	U_{EN}	$U_{ m lab}$
Rise time t _r	6.20%	6.20%
Peak voltage value V _p	8.60%	8.60%
Voltage pulse width t _w	5.90%	5.90%

Test System Setup

Test Standard

EN 55035:2017 (IEC 61000-4-4:2012)

Test Level

	Open Circuit Output Test Voltage ±10%							
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines						
1	0.5 kV	0.25 kV						
2	1 kV	0.5 kV						
3	2 kV	1 kV						
4	4 kV	2 kV						
X	Special	Special						

Performance criteria: B

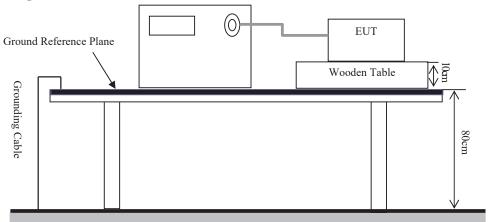
Test Procedure

The EUT was arranged for Power Line Coupling and for I/O Line Coupling through a capacitive clamp, where applicable. (Note: The I/O coupling test using a capacitive clamp is performed on the I/O interface cables that are longer in length than 3 meters.) A metal ground plane 2.4 meter by 2.0 meter was placed between the floor and the table and is connected to the earth by a 2.0 meter ground rod. The ground rod is connected to the test facility's electrical earth.

Report No.: RXM210219050-01

Test Data

Please refer to following tables:


Test Mode: Test Mode 1-6

Note:

T4 D-:	4	Test Level (kV)								
Test Points		+0.5	-0.5	+1.0	-1.0	+2.0	-2.0	+4.0	-4.0	
	L	A	A	A	A	/	/	/	/	
	N	A	A	A	A	/	/	/	/	
	Earth	A	A	A	A	/	/	/	/	
AC mains power	L+N	A	A	A	A	/	/	/	/	
input ports	L + Earth	A	A	A	A	/	/	/	/	
	N + Earth	A	A	A	A	/	/	/	/	
	L+N+Earth	A	A	A	A	/	/	/	/	
Signal ports	RJ45	A	A	A	A	A	A	/	/	

8 - SURGES IEC 61000-4-5

Test System Setup

Report No.: RXM210219050-01

Test Standard

EN 55035:2017 (IEC 61000-4-5:2005)

Test Level

Level	Open Circuit Output Test Voltage ±10%
1	0.5 kV
2	1 kV
3	2 kV
4	4 kV
X	Special

Performance criteria: B

Test Procedure

- 1) Provide disturbance signal described below is injected to EUT.
- 2) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 3) Different phase angles are done individually.
- 4) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

Page 37 of 55

Please refer to following tables:

Test Mode: Test Mode 1-6

Note:

Table 1: AC mains power input port

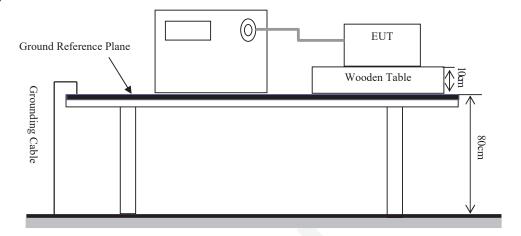

Level	Voltage	Poll	Path	Phase Angle	Pass	Fail
1	0.5kV	+	L- N, L-G	90	A	/
1	0.5kV	-	L- N, L-G	270	A	/
1	0.5kV	ı	N-G	90	A	/
1	0.5kV	+	N-G	270	A	/
2	1kV	+	L- N, L-G	90	A	/
2	1kV	-	L- N, L-G	270	A	/
2	1kV	-	N-G	90	A	/
2	1kV	+	N-G	270	A	/
3	2kV	+	L-G	90	A	/
3	2kV	-	L-G	270	A	/
3	2kV	-	N-G	90	A	/
3	2kV	+	N-G	270	A	/
4	4kV	+	L-G	90	A	/
4	4kV	-	L-G	270	A	/
4	4kV	-	N-G	90	A	/
4	4kV	+	N-G	270	A	/

Table 2: RJ45 I/O Circuit and Lines

Level	Voltage	Poll	Path	Pass	Fail
1	0.5kV	±	Line-Ground	A	/
2	1kV	±	Line-Ground	A	/
3	2kV	±	Line-Ground	A	/
4	4kV	±	Line-Ground	A	/

9 - VOLTAGE DIPS AND SHORT INTERRUPTIONS IEC 61000-4-11

Test Setup

Test Standard

EN 55035:2017 (IEC 61000-4-11:2004) Test levels and Performance Criterion

Test Level

Test Level	U2 (% Reduction)	Duration (Periods)	Performance Criteria
1	>95	0.5	В
2	30	25	С
3	>95	250	С

Test Procedure

- 1) The interruption is introduced at selected phase angles with specified duration.
- 2) Record any degradation of performance.

Please refer to following tables:

Test Mode: Test Mode 1-6

B indicates that the power supply of the EUT was interrupted

Report No.: RXM210219050-01

Note: during the test, and the EUT was restarted. After the test, it can

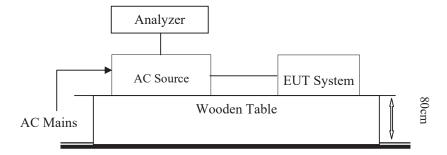

automatically return to normal use.

Table 1: Voltage Dips/Interruptions Test

U2 (% Reduction)	Td (Periods)	Phase Angle	N	Result
>95	0.5	0/90/180/270	3	A
30	25	0/90/180/270	3	A
>95	250	0/90/180/270	3	В

11 -VOLTAGE FLUCTUATIONS AND FLICKER

Test System Setup

Report No.: RXM210219050-01

Test Standard

EN 61000-3-3:2013

Flicker Test Limits:

The limits shall be applicable to voltage fluctuations and flicker at the supply terminals of the equipment under test, measured or calculated according to clause 4 under test conditions described in clause 6 and annex A. Tests made to prove compliance with the limits are considered to be type tests.

The following limits apply:

- the value of Pst shall not be greater than 1,0;
- the value of Plt shall not be greater than 0,65;
- the value of d(t) during a voltage change shall not exceed 3,3 % for more than 500 ms;
- the relative steady-state voltage change, dc, shall not exceed 3,3 %;
- the maximum relative voltage change dmax, shall not exceed
- a) 4 % without additional conditions;
- b) 6 % for equipment which is:
- switched manually, or
- switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.

Note: The cycling frequency will be further limited by the Pst and Plt limit. For example: a dmax of 6 % producing are ctangular voltage change characteristic twice per hour will give a Plt of about 0,65.

- c) 7 % for equipment which is
- attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or
- switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

In the case of equipment having several separately controlled circuits in accordance with 6.6, limits b) and c) shall apply only if there is delayed or manual restart after a power supply interruption; for all equipment with automatic switching which is energized immediately on restoration of supply after a power supply interruption, limits a) shall apply; for all equipment with manual switching, limits b) or c) shall apply depending on the rate of switching. Pst and Plt requirements shall not be applied to voltage changes caused by manual switching. The limits shall not be applied to voltage changes associated with emergency switching or emergency interruptions.

Short time (Pst): 10 min

Observation time: 120 min (12 Flicker measurement)

Test Mode: Test Mode 1_Worst case

Power Source: AC 230V/50Hz

Test Result PASS

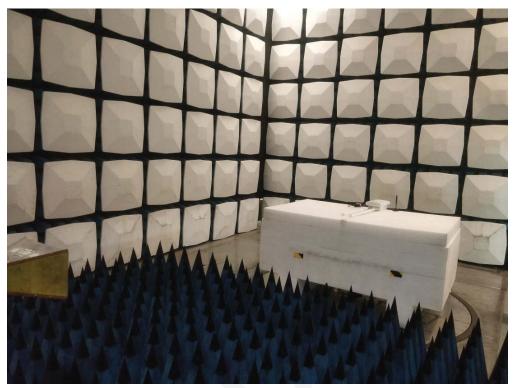
Maximum Flicker results

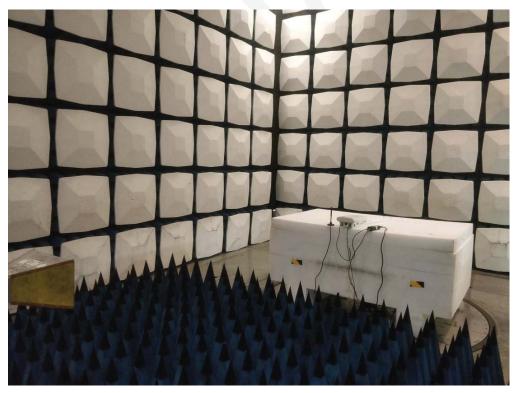
	EUT values	Limit	Result
Pst	0.028	1.00	PASS
Plt	0.028	0.65	PASS
dc [%]	0.008	3.30	PASS
dmax [%]	0.131	4.00	PASS
dt [s]	0.000	0.50	PASS

or photos in this section, please refer to report No.: RXM210219050-02 EXHIBIT A.	Compliance Laboratories Corp. (Dongguan)	Report No.: RXM210219050-01	
	EXHIBITA – EUT PHOTOGRAPHS		
	s in this section, please refer to report No.: R	XM210219050-02 EXHIBIT A.	

EXHIBITB – TEST SETUP PHOTOGRAPHS

Radiated Emission




Radiated Emission Below 1GHz rear View

Radiated Emission Above 1GHz front View

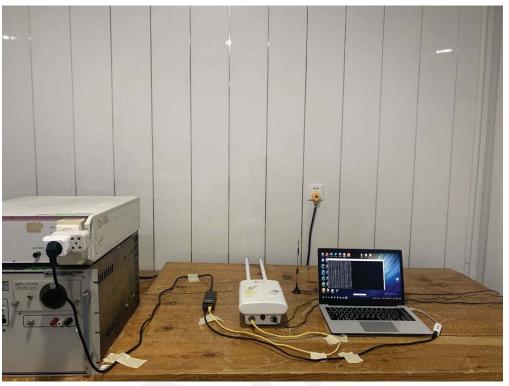
Radiated Emission Above 1GHz rear View

Conducted Emissions_AC

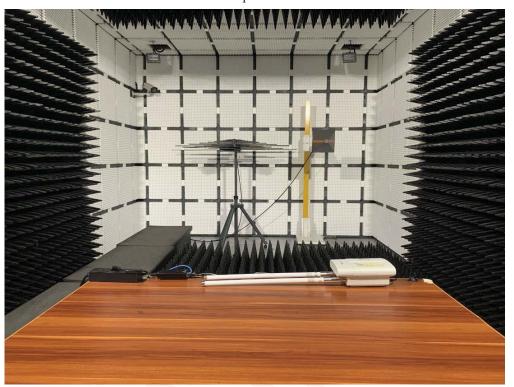
Conducted Emissions front View

Conducted Emissions side View

Conducted Emissions front ISN M2 View



Conducted Emissions side ISN M2 View

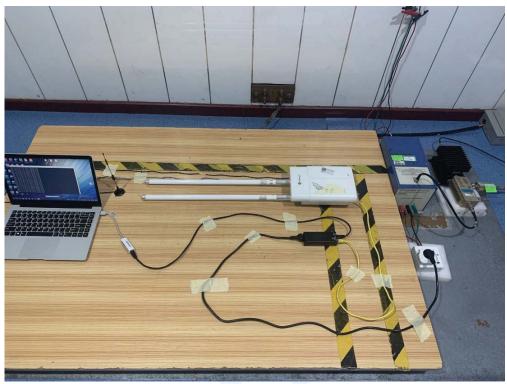


Flicker

Test Setup Photo View

Test Setup Photo View

Test Setup Photo View


Test Setup Photo View

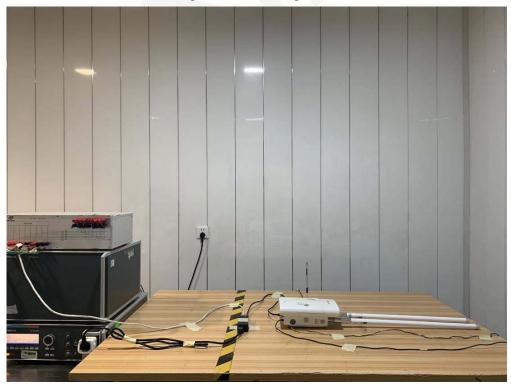
Signal Port Test Setup View

Test Setup Photo View

Signal Port Test Setup View

Test Setup Photo View

Dips


Test Setup Photo View

Test Setup Photo View

Signal Port Test Setup View

*****END OF REPORT****